Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Caspase inhibition in camptothecin-treated U-937 cells is coupled with a shift from apoptosis to transient G1 arrest followed by necrotic cell death.

Cancer Research 1999 August 2
Leukemia U-937 cells rapidly undergo characteristic morphological changes, caspase activation, and DNA fragmentation typical of apoptosis on treatment with the DNA topoisomerase I inhibitor camptothecin (CPT). In a previous report (Sané, A. T., and Bertrand, R., Cancer Res., 58: 3066-3072, 1998), we showed that, after CPT treatment, caspase inhibition by the tripeptide derivative benzyloxycarbonyl-Val-Ala-Asp(Ome)-fluoromethyl ketone (zVAD-fmk) blocked apoptosis and slowed passage of the cells through S-G2 and caused a transient accumulation of these cells at the G1 phase of the cell cycle. Accumulation of these cells at G1 is not associated with major changes in expression level of cyclin-dependent kinase (cdk)2, cdk4, and cdk6; cyclin D1 and cyclin E; or p16, p21, p27, and p57 after CPT treatment. Furthermore, cdk2, cdk4, and cdk6 kinase activities remain unaffected after CPT treatment. These results indicate that the G1 arrest of these cells does not correlate with a classical driven cell cycle checkpoint but with the known effect of CPT in mediating inhibition of DNA replication and RNA transcription after stabilization of topoisomerase I-linked DNA strand breaks. However, persistent caspase inhibition after CPT treatment also results in cells falling into necrosis after the transient G1 arrest. These results indicate that the enforced inhibition of caspase activities does not confer a survival advantage upon CPT-treated cells but is coupled with a shift from apoptosis to transient G1 arrest followed by massive necrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app