COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Reversible inhibition of acetylcholinesterase and butyrylcholinesterase by 4,4'-bipyridine and by a coumarin derivative.

Inhibition of recombinant mouse wild type AChE (EC 3.1.1.7) and BChE (EC 3.1.1.8), and AChE peripheral site-directed mutants and human serum BChE variants by 4,4'-bipyridine (4,4'-BP) and the coumarin derivative 3-chloro-7-hydroxy-4-methylcoumarin (CHMC) was studied. The enzyme activity was measured with acetylthiocholine as substrate. Enzyme-inhibitor dissociation constants for the catalytic and peripheral sites were evaluated from the apparent dissociation constants as a function of the substrate concentration. Inhibition by 4,4'-BP of AChE, BChE and the AChE mutant Y72N/Y124Q/W286A, was consistent with inhibitor binding to both catalytic and peripheral sites. The dissociation constants for the peripheral site were about 3.5-times higher than for the catalytic site. The competition between CHMC and substrate displayed two binding sites on the AChE mutants Y72N, Y124Q, W286A and W286R, and on the atypical and fluoride-resistant BChE variants. The dissociation constants for the peripheral site were on average two-times higher than for the catalytic site. CHMC displayed binding only to the catalytic site of Y72N/Y124Q/W286A mutant and only to the peripheral site of w.t. AChE and the human usual BChE. Modelling of the 4,4'-BP and CHMC binding to wild type mouse AChE substantiated the difference between the inhibitors in their mode of binding which was revealed in the kinetic studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app