JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Trypanosoma cruzi infects human dendritic cells and prevents their maturation: inhibition of cytokines, HLA-DR, and costimulatory molecules.

Trypanosoma cruzi, a parasitic protozoan, is the etiological agent of Chagas' disease. Despite the many immune system disorders recognized in this infection and the crucial role played by dendritic cells (DC) in acquired immune responses, it was not known whether these cells could be infected by T. cruzi trypomastigotes and the consequences of such an infection on their immune functions. We now provide evidence that human monocyte-derived DC can be infected by T. cruzi and can support its intracellular multiplication. Interestingly, this infection has functional consequences on immature DC and on their maturation induced by lipopolysaccharide (LPS). First, after T. cruzi infection, the basal synthesis of interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-alpha) was impaired. Furthermore, the process of maturation of DC induced by LPS was drastically affected by T. cruzi infection. Indeed, secretion of cytokines such as IL-12, TNF-alpha, and IL-6, which are released normally at high levels by LPS-activated DC, as well as the up-regulation of HLA-DR and CD40 molecules, was significantly reduced after this infection. The same effects could be induced by T. cruzi-conditioned medium, indicating that at least these inhibitory effects were mediated by soluble factors released by T. cruzi. Taken together, these results provide new insights into a novel efficient mechanism, directly involving the alteration of DC function, which might be used by T. cruzi to escape the host immune responses in Chagas' disease and thus might favor persistent infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app