JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Properties and biodegradability of ultra-high-molecular-weight poly[(R)-hydroxybutyrate] produced by a recombinant Escherichia coli.

Ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] (P(3HB)) (Mw = 3-11 x 10(6)) was produced from glucose by a recombinant Escherichia coli XL1-Blue (pSYL105) harboring Ralstonia eutropha H16 polyhydroxyalkanoate (PHA) biosynthesis genes. Morphology of ultra-high-molecular-weight P(3HB) granules in the recombinant cells was studied by transmission electron microscopy. The recombinant E. coli contained several P(3HB) granules within a cell. Freeze-fracture morphology of ultra-high-molecular-weight P(3HB) granules showed the needle-type as that of P(3HB) granules in R. eutropha. Both the P(3HB) granules in wet cells and wet native granules isolated from the recombinant cells proved to be amorphous on the X-ray diffraction patterns. Mechanical properties of ultra-high-molecular-weight P(3HB) films were markedly improved by stretching over 400%, resulting from high crystallinity and highly oriented crystal regions. Biodegradability of the films of ultra-high-molecular-weight P(3HB) was tested with an extracellular polyhydroxybutyrate depolymerase from Alcaligenes faecalis T1. The rate of enzymatic erosion of P(3HB) films was not dependent of the molecular weight but was dependent of the crystallinity. In addition, it is demonstrated that all ultra-high-molecular-weight P(3HB) films were completely degraded at 25 degrees C in a natural river freshwater within 3 weeks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app