Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides.

The mdx mouse, which carries a nonsense mutation in exon 23 of the dystrophin gene, has been used as an animal model of Duchenne muscular dystrophy to evaluate cell or gene replacement therapies. Despite the mdx mutation, which should preclude the synthesis of a functional dystrophin protein, rare, naturally occurring dystrophin-positive fibres have been observed in mdx muscle tissue. These dystrophin-positive fibres are thought to have arisen from an exon-skipping mechanism, either somatic mutations or alternative splicing. Increasing the frequency of these fibres may offer another therapeutic approach to reduce the severity of Duchenne muscular dystrophy. Antisense oligonucleotides have been shown to block aberrant splicing in the human beta-globin gene. We wished to use a similar approach to re-direct normal processing of the dystrophin pre-mRNA and induce specific exon skipping. Antisense 2'-O-methyl-oligoribonucleotides, directed to the 3' and 5' splice sites of introns 22 and 23, respectively in the mdx pre-mRNA, were used to transfect myoblast cultures. The 5' antisense oligonucleotide appeared to efficiently displace factors normally involved in the removal of intron 23 so that exon 23 was also removed during the splicing of the dystrophin pre-mRNA. Approximately 50% of the dystrophin gene mRNAs were missing this exon 6 h after transfection of primary mdx myotubes, with all transcripts showing skipping of exon 23 after 24 h. Deletion of exon 23 does not disrupt the reading frame and should allow the synthesis of a shorter but presumably functional Becker-like dystrophin. Molecular intervention at dystrophin pre-mRNA splicing has the potential to reduce the severity of a Duchenne mutation to the milder Becker phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app