Combined effects of probucol and benzafibrate on lipoprotein metabolism and liver cholesteryl ester transfer protein mRNA in cholesterol-fed rabbits

J Ou, K Saku, S Jimi, Y L Liao, T Ohta, B Zhang, K Arakawa
Japanese Circulation Journal 1999, 63 (6): 471-7
Probucol decreases and bezafibrate increases plasma high density lipoprotein-cholesterol (HDL-C) levels in humans. This study was performed to determine whether the HDL-C-lowering effects of probucol could be reversed by treatment with bezafibrate in hypercholesterolemic rabbits. Forty-nine normolipidemic Japanese White rabbits were divided into 5 groups [group 1: normal chow; group 2: 0.2% cholesterol (Ch) diet; group 3: 0.2% Ch and 1% probucol diet; group 4: 0.2% Ch and 1% bezafibrate diet; group 5: 0.2% Ch and 1% probucol plus 1% bezafibrate diet] and treated for 8 weeks. Plasma lipids, cholesteryl ester transfer protein (CETP) activity in the lipoprotein-deficient plasma fraction, CETP mRNA in liver tissue and plasma drug concentrations were investigated. Serum total cholesterol (TC) increased after the rabbits in groups 2, 3, 4 and 5 were fed Ch, but overall, no significant differences were observed in serum TC and triglyceride (TG) among these groups. Serum HDL-C levels increased (p<0.01) in the bezafibrate-treated group, but a significant (p<0.05) reduction in HDL-C was observed in both the Ch + probucol (group 3) and Ch + probucol plus bezafibrate (group 5) groups; no significant difference was observed between groups 3 and 5. Significant correlation (p<0.01) was found between serum low density lipoprotein cholesterol (LDL-C) levels and plasma probucol concentrations in groups 3 and 5, but no correlation was found between plasma concentrations of probucol/bezafibrate and serum HDL-C levels. CETP activity in the lipoprotein-deficient plasma fraction increased in the Ch-, Ch + probucol-, and Ch + probucol and bezafibrate-fed groups (groups 2, 3 and 5, respectively), whereas a significant reduction in this activity was observed in the Ch + bezafibrate-fed group (group 4). An analysis of covariance showed that the CETP activity responded more sensitively to drug treatment than did the serum HDL-C level. CETP mRNA in liver tissue was assessed by Northern blotting at 8 weeks, but no changes were observed among the 5 groups. Probucol decreased and bezafibrate increased serum HDL-C levels, through CETP activity without affecting liver CETP mRNA levels, and the decrease in HDL-C levels produced by probucol could not be reversed by bezafibrate.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"