Add like
Add dislike
Add to saved papers

Virus validation of pH 4-treated human immunoglobulin products produced by the Cohn fractionation process.

To assess the virus reducing capacity of Cohn's cold ethanol fractionation process for the production of intravenous (IVIg) and intramuscular (IMIg) immunoglobulin products, and treatment of these products at pH 4, a validation study of virus removal and/or inactivation was performed using both lipid-enveloped viruses [human immunodeficiency virus (HIV), bovine viral diarrhoea virus (BVDV) and pseudorabies virus (PSR)], and non-lipid-enveloped viruses [(simian virus 40 (SV40) and encephalomyocarditis virus (EMC)]. For the cold ethanol fractionation process, overall reduction factors of 3.0 logs, > or = 2.6 (< 5.5) logs, 4.6 logs, 5.8 logs and > or = 2.6 (< 6.2) logs were found for HIV, BVDV, PSR, SV40 and EMC, respectively. For all tested viruses the precipitation of fraction III from fraction II + III was the most effective step. From the overall reduction factors it appears that cold ethanol fractionation, although capable of reducing viral infectivity to a significant extent, is not sufficient to meet the requirements of regulatory bodies for viral safety of immunoglobulin products. However, pH 4 treatment contributes effectively to the viral safety of the final products. Treatment at pH 4.05 and 37 degrees C for 16 h, as is applied to IVIg, yields reduction factors of > or = 8.4 logs, > or = 4.0 logs, > or = 7.1 logs, 4.8 logs and 1.4 logs for HIV, BVDV, PSR, SV40 and EMC, respectively. The effectiveness of this process step could be enhanced by extending incubation to 40 h at pH 4.25 compared to 16 h at pH 4.05. The extended incubation, as applied in the production of IMIg, yields a reduction of infectivity of SV40 by > or = 5.5 (< 8.0) logs and of EMC by > or = 4.1 (< 7.1) logs. Storage of IMIg, which is formulated as a solution, at 2-8 degrees C also contributes to virus safety. For storage periods of 8 weeks or longer, reduction factors of 2 to 6 logs were found for all viruses, except for BVDV which remained unaffected. These data indicate that the production processes for IVIg and IMIg as described here have sufficient virus reducing capacity to achieve a high margin of virus safety.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app