JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structural and functional analyses of photosynthetic regulatory genes regA and regB from Rhodovulum sulfidophilum, Roseobacter denitrificans, and Rhodobacter capsulatus.

Genes coding for putative RegA, RegB, and SenC homologues were identified and characterized in the purple nonsulfur photosynthetic bacteria Rhodovulum sulfidophilum and Roseobacter denitrificans, species that demonstrate weak or no oxygen repression of photosystem synthesis. This additional sequence information was then used to perform a comparative analysis with previously sequenced RegA, RegB, and SenC homologues obtained from Rhodobacter capsulatus and Rhodobacter sphaeroides. These are photosynthetic bacteria that exhibit a high level of oxygen repression of photosystem synthesis controlled by the RegA-RegB two-component regulatory system. The response regulator, RegA, exhibits a remarkable 78.7 to 84.2% overall sequence identity, with total conservation within a putative helix-turn-helix DNA-binding motif. The RegB sensor kinase homologues also exhibit a high level of sequence conservation (55.9 to 61.5%) although these additional species give significantly different responses to oxygen. A Rhodovulum sulfidophilum mutant lacking regA or regB was constructed. These mutants produced smaller amounts of photopigments under aerobic and anaerobic conditions, indicating that the RegA-RegB regulon controls photosynthetic gene expression in this bacterium as it does as in Rhodobacter species. Rhodobacter capsulatus regA- or regB-deficient mutants recovered the synthesis of a photosynthetic apparatus that still retained regulation by oxygen tension when complemented with reg genes from Rhodovulum sulfidophilum and Roseobacter denitrificans. These results suggest that differential expression of photosynthetic genes in response to aerobic and anaerobic growth conditions is not the result of altered redox sensing by the sensor kinase protein, RegB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app