REVIEW
Asbestos, chromosomal deletions, and tumor suppressor gene alterations in human malignant mesothelioma.
Journal of Cellular Physiology 1999 August
Exposure to the carcinogen asbestos is considered to be a major factor contributing to the development of most malignant mesotheliomas (MMs). We highlight the role of asbestos in MM and summarize cytogenetic and molecular genetic findings in this malignancy. The accumulation of numerous clonal chromosomal deletions in most MMs suggests a multistep process of tumorigenesis, characterized by the loss and/or inactivation of multiple tumor suppressor genes (TSGs). Cytogenetic and loss of heterozygosity (LOH) analyses of MMs have demonstrated frequent deletions of specific sites within chromosome arms 1p, 3p, 6q, 9p, 13q, 15q, and 22q. Furthermore, TSGs within two of these regions, i.e., p16/CDKN2A-p14ARF at 9p21 and NF2 at 22q12, are frequently altered in MMs. Homozygous deletion appears to be the major mechanism affecting p16/CDKN2A-p14ARF, whereas inactivating mutations coupled with allelic loss occur at the NF2 locus. Finally, recent studies have demonstrated the presence and expression of simian virus 40 (SV40) in many MMs. SV40 large T antigen has been shown to inactivate the TSG products Rb and p53, suggesting the possibility that asbestos and SV40 could act as cocarcinogens in MM. The frequent occurrence of homozygous deletions of p16/CDKN2A-p14ARF and the ability of SV40 Tag to bind TSG products suggest that perturbations of both Rb- and p53-dependent growth-regulatory pathways are critically involved in the pathogenesis of MM.
Full text links
Trending Papers
Mechanical power of ventilation and driving pressure: two undervalued parameters for pre extracorporeal membrane oxygenation ventilation and during daily management?Critical Care : the Official Journal of the Critical Care Forum 2023 March 15
Practical guide for safe sedation.Journal of Anesthesia 2023 March 14
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app