Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Use of conserved randomly amplified polymorphic DNA (RAPD) fragments and RAPD pattern for characterization of Lactobacillus fermentum in Ghanaian fermented maize dough.

The present work describes the use of randomly amplified polymorphic DNA (RAPD) for the characterization of 172 dominant Lactobacillus isolates from present and previous studies of Ghanaian maize fermentation. Heterofermentative lactobacilli dominate the fermentation flora, since approximately 85% of the isolates belong to this group. Cluster analysis of the RAPD profiles obtained showed the presence of two main clusters. Cluster 1 included Lactobacillus fermentum, whereas cluster 2 comprised the remaining Lactobacillus spp. The two distinct clusters emerged at the similarity level of <50%. All isolates in cluster 1 showed similarity in their RAPD profile to the reference strains of L. fermentum included in the study. These isolates, yielding two distinct bands of approximately 695 and 773 bp with the primers used, were divided into four subclusters, indicating that several strains are involved in the fermentation and remain dominant throughout the process. The two distinct RAPD fragments were cloned, sequenced, and used as probes in Southern hybridization experiments. With one exception, Lactobacillus reuteri LMG 13045, the probes hybridized only to fragments of different sizes in EcoRI-digested chromosomal DNA of L. fermentum strains, thus indicating the specificity of the probes and variation within the L. fermentum isolates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app