JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Acetyl- L -carnitine decreases glycation of lens proteins: in vitro studies.

Although the role of carnitine system in the ocular tissues is not clearly understood, earlier studies showed that lenticular levels of L -carnitine were the highest among ocular tissues and there was a dramatic depletion of lenticular L -carnitine and acetyl- L -carnitine in streptozotocin-diabetic rats. As protein glycation has been implicated in the development of several diabetic complications including cataracts, this study was initiated to show the possible effects of L -carnitine and acetyl- L -carnitine on the glycation and advanced glycation (AGEs) of lens proteins. Calf lens soluble fraction (crystallins) was incubated with 50 m m glucose (containing14C glucose) with or without 5-50 m ml -carnitine, 5-50 m m acetyl- L -carnitine and 5-50 m m acetyl salicylic acid, for 15 days. The results show that while L -carnitine did not have any effect on in vitro glycation of lens crystallins, acetyl- L -carnitine and acetyl salicylic acid decreased crystallin glycation by 42% and 63%, respectively-this decrease was concentration dependent. Glycated crystallins were separated on HPLC which showed that the rate of glycation is in the following order: alpha>beta>gamma. Interestingly, acetyl- L -carnitine inhibited glycation of alpha crystallin more than other crystallins. In vitro incubations with [3H-acetyl] acetyl- L -carnitine showed that acetyl- L -carnitine acetylates lens crystallins (non-enzymatically) and alpha crystallin is the major acetylated protein. Furthermore, there was a 70% reduction in anti-AGE antibody reactivity when 50 m m acetyl- L -carnitine was included in the incubation of lens crystallins and 10 m m erythrose, suggesting that inhibition of glycation by acetyl- L -carnitine also affected the generation of AGEs. This in vitro study shows, for the first time, that acetyl- L -carnitine could acetylate potential glycation sites of lens crystallins, and protect them from glycation-mediated protein damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app