Comparative Study
Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Upregulation and spatial shift in the localization of the mannose 6-phosphate/insulin-like growth factor II receptor during radiation enteropathy development in the rat.

BACKGROUND AND PURPOSE: Transforming growth factor beta1 (TGF-beta1) appears to play an important role in the pathogenesis of chronic radiation-induced fibrosis in the intestine and several other organs. TGF-beta1 is secreted as a non-biologically active complex and its function depends on activation. In vitro data suggest that the mannose 6-phosphate/insulin-like growth factor-beta (M6P/IGF-II) receptor is involved in the mechanism of TGF-beta1 activation. Thus, we used a rat model of radiation enteropathy to examine the potential role of the M6P/IGF-II receptor in the in vivo regulation of TGF-beta1 activity and localization.

MATERIALS AND METHODS: A scrotal hernia containing a loop of small intestine was created in male rats. The intestine in the scrotum was exposed to 0, 12, or 21 Gy single dose X-radiation. Groups of rats were euthanized 1 day and 2, 6 and 26 weeks after irradiation. Histopathologic injury was assessed with a radiation injury score (RIS). Computerized image analysis was used to identify M6P/IGF-II receptor-positive cells and to quantify extracellular matrix-associated TGF-beta1 immunoreactivity. Changes in urokinase plasminogen activator (uPA), tissue-like plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) immunoreactivity were also assessed.

RESULTS: In normal (sham-irradiated) intestine, M6P/IGF-II immunoreactivity was confined to relatively weak, but specific epithelial staining. Irradiated intestine exhibited a highly significant time- and dose-dependent increase in the number of M6P/IGF-II receptor-positive cells (P < 0.001). There was a striking spatial shift of M6P/IGF-II receptor immunoreactivity from epithelium during the early post-radiation phase to stromal cells, most notably fibroblasts during the later stages of injury. Irradiated intestine exhibited distinct co-localization of M6P/ IGF-II receptor-positive cells and extracellular matrix-associated TGF-beta1 in areas of histopathologic injury. There were highly significant associations between the number of M6P/IGF-II receptor-positive stromal cells and TGF-beta1 immunoreactivity (P < 0.001), radiation-induced fibrosis (P < 0.001) and RIS (P < 0.001). Endothelial tPA immunoreactivity decreased significantly after irradiation (P < 0.001), whereas uPA and PAI-1 immunoreactivity levels appeared to be unchanged.

CONCLUSIONS: M6P/IGF-II receptor upregulation may be a key factor in the in vivo control of TGF-beta1 activity and responsible for the tissue specificity of TGF-beta1 action after irradiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app