Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Complex post-transcriptional regulation of EGF-receptor expression by EGF and TGF-alpha in human prostate cancer cells.

The epidermal growth factor receptor (EGFR) plays an important role in the development and progression of prostate cancer and its overexpression is associated with decreased survival. With progression, prostate cancer cells switch from epidermal growth factor (EGF) to transforming growth factor alpha (TGF-alpha) synthesis, which contributes to autocrine growth and unrestrained proliferation. To define the molecular mechanisms involved in the regulation of EGFR expression by EGF and TGF-alpha we studied three human prostate cancer cell lines, androgen-responsive (LNCaP) and -unresponsive (DU145 and PC3). Here we show that TGF-alpha stabilized EGFR mRNA two- to threefold in all three cell lines, whilst EGF stabilized EGFR mRNA approximately twofold in LNCaP and DU145 cells, but not in PC3 cells. Both ligands increased EGFR transcription in LNCaP and DU145 cells, with less effect in PC3 cells. In all three cell lines EGF reduced total EGFR protein levels more than TGF-alpha, but this was associated with a greater increase in de novo protein synthesis with EGF compared to TGF-alpha. Only EGF, however, shortened EGFR protein stability (half-life decreased from 5 h to 120 min), resulting in rapid disappearance of newly synthesized EGFR protein. Both ligands increased total LNCaP and DU145 cell numbers. These studies demonstrate that the EGF- and TGF-alpha-induced upregulation of EGFR mRNA and protein in human prostate cancer cell lines is complex and occurs at multiple, transcriptional and post-transcriptional levels. Taken together, these data provide novel insight into the molecular mechanisms by which TGF-alpha would preferentially maintain an autocrine loop in human prostate cancer cells. Furthermore, this work suggests that in human prostate cancer cells ligand-specific differential intracellular trafficking of the EGFR plays a major role in regulating its expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app