CLINICAL TRIAL
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Degree of arterial desaturation in normoxia influences VO2max decline in mild hypoxia.

PURPOSE: Elite endurance athletes display varying degrees of pulmonary gas exchange limitations during maximal normoxic exercise and many demonstrate reduced arterial O2 saturations (SaO2) at VO2max--a condition referred to as exercise induced arterial hypoxemia (EIH). We asked whether mild hypoxia would cause significant declines in SaO2 and VO2max in EIH athletes while non-EIH athletes would be unaffected.

METHODS: Nineteen highly trained males were divided into EIH (N = 8) or Non-EIH (N = 6) groups based on SaO2 at VO2max (EIH <90%, Non-EIH >92%). Athletes with intermediate SaO2 values (N = 5) were only included in correlational analyses. Two randomized incremental treadmill tests to exhaustion were completed--one in normoxia, one in mild hypoxia (FIO2 = 0.187; approximately 1,000 m).

RESULTS: EIH subjects demonstrated a significant decline in VO2max from normoxia to mild hypoxia (71.1+/-5.3 vs. 68.1+/-5.0 mL x kg(-1) min(-1), P<0.01), whereas the non-EIH group did not show a significant deltaVO2max (67.2+/-7.6 vs. 66.2+/-8.4 mL x kg(-1) x min(-1)). For all 19 athletes, SaO2 during maximal exercise in normoxia correlated with the change in VO2max from normoxia to mild hypoxia (r = -0.54, P<0.05). However, the change in SaO2 and arterial O2 content from normoxia to mild hypoxia was equal for both EIH and Non-EIH (deltaSaO2 = 5.2% for both groups), bringing into question the mechanism by which changes in SaO2 affect VO2max in mild hypoxia.

CONCLUSIONS: We conclude that athletes who display reduced measures of SaO2 during maximal exercise in normoxia are more susceptible to declines in VO2max in mild hypoxia compared with normoxemic athletes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app