Western-type diets induce insulin resistance and hyperinsulinemia in LDL receptor-deficient mice but do not increase aortic atherosclerosis compared with normoinsulinemic mice in which similar plasma cholesterol levels are achieved by a fructose-rich diet

S Merat, F Casanada, M Sutphin, W Palinski, P D Reaven
Arteriosclerosis, Thrombosis, and Vascular Biology 1999, 19 (5): 1223-30
The role of insulin resistance (IR) in atherogenesis is poorly understood, in part because of a lack of appropriate animal models. We assumed that fructose-fed LDL receptor-deficient (LDLR-/-) mice might be a model of IR and atherosclerosis because (1) fructose feeding induces hyperinsulinemia and IR in rats; (2) a preliminary experiment showed that fructose feeding markedly increases plasma cholesterol levels in LDLR-/- mice; and (3) hypercholesterolemic LDLR-/- mice develop extensive atherosclerosis. To test whether IR could be induced in LDLR-/- mice, 3 groups of male mice were fed a fructose-rich diet (60% of total calories; n=16), a fat-enriched (Western) diet intended to yield the same plasma cholesterol levels (n=18), or regular chow (n=7) for approximately 5.5 months. The average cholesterol levels of both hypercholesterolemic groups were similar (849+/-268 versus 964+/-234 mg/dL) and much higher than in the chow-fed group (249+/-21 mg/dL). Final body weights in the Western diet group were higher (39+/-6.2 g) than in the fructose- (27.8+/-2.7 g) or chow-fed (26.7+/-3.8 g) groups. Contrary to expectation, IR was induced in mice fed the Western diet, but not in fructose-fed mice. The Western diet group had higher average glucose levels (187+/-16 versus 159+/-12 mg/dL) and 4.5-fold higher plasma insulin levels. Surprisingly, the non-insulin-resistant, fructose-fed mice had significantly more atherosclerosis than the insulin-resistant mice fed Western diet (11.8+/-2.9% versus 7.8+/-2. 5% of aortic surface; P<0.01). These results suggest that (1) fructose-enriched diets do not induce IR in LDLR-/- mice; (2) the Western diets commonly used in LDLR-/- mice may not only induce atherosclerosis, but also IR, potentially complicating the interpretation of results; and (3) IR and hyperinsulinemia do not enhance atherosclerosis in LDLR-/- mice, at least under conditions of very high plasma cholesterol levels. The fact that various levels of hypercholesterolemia can be induced in LDLR-/- mice by fat-enriched diets and that such diets induce IR and hyperinsulinemia suggest that LDLR-/- mice may be used as models to elucidate the effect of IR on atherosclerosis, eg, by feeding them Western diets with or without insulin-sensitizing agents.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"