JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Maximal exercise capacity and peripheral skeletal muscle function following lung transplantation.

BACKGROUND: There have been many suggestions that diminished exercise capacity in patients that have undergone lung transplantation is due, in part, to peripheral muscle dysfunction, brought on by either detraining or immunosuppressive therapy. There is limited data quantifying skeletal muscle function in this population, especially in those more than 18 months post-procedure. The present study sought to quantitate skeletal muscle function and cardiopulmonary responses to graded exercise in 19 lung transplant recipients, 15 of which were mostly more than 18 months post-procedure.

METHODS: Ten single- (SLT) and 9 double-lung transplantation (DLT) underwent anthropometric measures and performed expiratory spirometry, whole body plethysmography to assess lung volumes, static maximal mouth pressures to assess respiratory muscle strength, progressive exercise testing on a cycle ergometer (with cardiac output measurements being performed every second workload) and isokinetic cycling to assess peripheral muscle power and work capacity.

RESULTS: The DLT group was younger than the SLT group (23.0 [21.0-32.0] vs 47.5 [43.0-55.0] median [interquartile range], p < .05) with no differences in height, weight, or BMI. Despite the DLT group having significantly better spirometric values (FEV1: 86% vs 56.5% median) and less airtrapping (RV/TLC: 30% vs 53.5%), both groups were equally limited in exercise capacity (Wmax)(38.0 percent predicted [30.0-65.0] vs 37.5 percent predicted [30.0-44.0], SLT vs DLT), leg power (76.1 percent predicted [53.8-81.4] vs 69.0 percent predicted [58.3-76.0]) and leg work capacity (63.3 percent predicted [34.7-66.8] vs 38.4 percent predicted [27.5-57.3]). This lack of difference in performance persisted when the analysis was limited to those more than 18 months post-procedure. Respiratory muscle strength was also not different for the two groups, and was within normal limits. Wmax was best correlated with leg work capacity (r = .84), but also with leg power, RV/TLC, FEV1 (r = .49, -.52, .58). When normalized for age, height, and sex, percent predicted Wmax only correlated with percent predicted leg work capacity (r = .58). Cardiac output was appropriate for the work performed.

CONCLUSIONS: We conclude that peripheral skeletal muscle work capacity is reduced following lung transplantation and mostly responsible for the limitation of exercise performance. While the causes of muscular dysfunction have yet to be clarified, the preservation of respiratory muscle strength with the concomitant reduction in leg power and work capacity suggests that most of the muscular dysfunction post-transplantation is attributable to detraining.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app