JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Expressional regulation of smooth muscle cell-specific genes in association with phenotypic modulation.

Phenotypic modulation of smooth muscle cells (SMCs) plays an integral role in atherosclerosis, hypertension and leiomyogenic tumorigenicity. The morphological, functional, and biochemical characteristics of SMCs in different phenotypes such as differentiated and dedifferentiated states have been well studied. Recent researches have focused on the expressional regulation of SMC-specific marker genes in association with phenotypic modulation of SMCs. The SMC-specific marker genes are regulated at the levels of transcription and splicing. The caldesmon, smooth muscle myosin heavy chain, alpha-smooth muscle actin, calponin, SM22, alpha- and beta-tropomyosins, and alpha1 integrin genes are transcriptionally regulated; transcription of these genes except for the alpha-smooth muscle actin gene is upregulated in differentiated SMCs, but is downregulated in dedifferentiated SMCs. The expression pattern of alpha-smooth muscle actin is opposite in vascular and visceral SMCs. In almost all promoter regions of these genes, the CArG box and serum response factor (SRF) are involved in as the positive cis-element and the trans-acting factor, respectively. Isoform changes of caldesmon, alpha-tropomyosin, vinculin/metavinculin, and smooth muscle myosin heavy chain are regulated by alternative splicing in a SMC phenotype-dependent manner. Among them, isoform interconversions of caldesmon and alpha-tropomyosin are completely coordinated with phenotype of SMCs. The purpose of this paper is to summarize current knowledge of the expressional regulation of SMC-specific marker genes in different phenotypes of SMCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app