JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Surface friction in near-vertex head and neck impact increases risk of injury.

A computational head-neck model was developed to test the hypothesis that increases in friction between the head and impact surface will increase head and neck injury risk during near-axial impact. The model consisted of rigid vertebrae interconnected by assemblies of nonlinear springs and dashpots, and a finite element shell model of the skull. For frictionless impact surfaces, the model reproduced the kinematics and kinetics observed in near-axial impacts to cadaveric head-neck specimens. Increases in the coefficient of friction between the head and impact surface over a range from 0.0 to 1.0 resulted in increases of up to 40, 113, 9.8, and 43% in peak post-buckled resultant neck forces, peak moment at the occiput-C1 joint, peak resultant head accelerations, and HIC values, respectively. The most dramatic increases in injury-predicting quantities occurred for COF increases from 0.0 to 0.2, while further COF increases above 0.5 generally produced only nominal changes. These data suggest that safety equipment and impact environments which minimize the friction between the head and impact surface may reduce the risk of head and neck injury in near-vertex head impact.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app