IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Limited role of ceramide in lipopolysaccharide-mediated mitogen-activated protein kinase activation, transcription factor induction, and cytokine release.

The involvement of ceramide in lipopolysaccharide-mediated activation of mouse macrophages was studied. Lipopolysaccharide, cell-permeable ceramide analogs, and bacterial sphingomyelinase led to phosphorylation of the extracellular signal-regulated kinases, c-Jun NH2-terminal kinases, and p38 kinase and induced AP-1 DNA binding in C3H/OuJ (Lpsn) but not in C3H/HeJ (Lpsd) macrophages. Lipopolysaccharide and ceramide mimetics showed distinct kinetics of mitogen-activated protein kinase phosphorylation and AP-1 induction and activated AP-1 complexes with different subunit compositions. Lipopolysaccharide-activated AP-1 consisted of c-Fos, Jun-B, Jun-D, and c-Jun, while C2-ceramide induced Jun-D and c-Jun only. Lipopolysaccharide and, less potently, C2-ceramide or sphingomyelinase, stimulated AP-1-dependent reporter gene transcription in RAW 264.7 cells. Unlike lipopolysaccharide, C2-ceramide failed to activate NF-kappaB and did not induce production of tumor necrosis factor or interleukin-6. The lipopolysaccharide antagonist, Rhodobacter sphae-roides diphosphoryl lipid A, inhibited lipopolysaccharide activation of NF-kappaB and AP-1 but did not block C2-ceramide-induced AP-1. Pretreatment of C3H/OuJ macrophages with C2-ceramide greatly diminished AP-1 induction following subsequent C2-ceramide stimulation. However, lipopolysaccharide-induced transcription factor activation and cytokine release were not influenced. In contrast, lipopolysaccharide pretreatment inhibited both lipopolysaccharide- and C2-ceramide-mediated responses. Thus, ceramide partially mimics lipopolysaccharide in activating the mitogen-activated protein kinases and AP-1 but not in mediating NF-kappaB induction or cytokine production, suggesting a limited role in lipopolysaccharide signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app