Add like
Add dislike
Add to saved papers

The case for light-dependent magnetic orientation in animals

Light-dependent models of magnetoreception have been proposed which involve an interaction between the magnetic field and either magnetite particles located within a photoreceptor or excited states of photopigment molecules. Consistent with a photoreceptor-based magnetic compass mechanism, magnetic orientation responses in salamanders, flies and birds have been shown to be affected by the wavelength of light. In birds and flies, it is unclear whether the effects of light on magnetic orientation are due to a direct effect on a magnetoreception system or to a nonspecific (e.g. motivational) effect of light on orientation behavior. Evidence from shoreward-orienting salamanders, however, demonstrates that salamanders perceive a 90 degrees counterclockwise shift in the direction of the magnetic field under long-wavelength (>=500 nm) light. A simple physiological model based on the antagonistic interaction between two magnetically sensitive spectral mechanisms suggests one possible way in which the wavelength-dependent effects of light on the salamander's magnetic compass response might arise. Assuming that the wavelength-dependent characteristics of the avian magnetic response can be attributed to an underlying magnetoreception system, we discuss several hypotheses attempting to resolve the differences observed in the wavelength-dependent effects of light on magnetic orientation in birds and salamanders. By considering the evidence in the context of photoreceptor- and non-photoreceptor-based mechanisms for magnetoreception, we hope to encourage future studies designed to distinguish between alternative hypotheses concerning the influence of light on magnetoreception.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app