IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Hyperglycemia inhibits insulin activation of Akt/protein kinase B but not phosphatidylinositol 3-kinase in rat skeletal muscle.

Diabetes 1999 March
Sustained hyperglycemia impairs insulin-stimulated glucose utilization in the skeletal muscle of both humans and experimental animals--a phenomenon referred to clinically as glucose toxicity. To study how this occurs, a model was developed in which hyperglycemia produces insulin resistance in vitro. Rat extensor digitorum longus muscles were preincubated for 4 h in Krebs-Henseleit solution containing glucose or glucose + insulin at various concentrations, after which insulin action was studied. Preincubation with 25 mmol/l glucose + insulin (10 mU/ml) led to a 70% decrease in the ability of insulin (10 mU/ml) to stimulate glucose incorporation into glycogen and a 30% decrease in 2-deoxyglucose (2-DG) uptake, compared with muscles incubated with 0 mmol/l glucose. Glucose incorporation into lipid and its oxidation to CO2 were marginally diminished, if at all. The alterations of glycogen synthesis and 2-DG uptake were first evident after 1 h and were maximal after 2 h of preincubation; they were not observed in muscles preincubated with 25 mmol/l glucose + insulin for 5 min. Preincubation for 4 h with 25 mmol/l glucose in the absence of insulin produced a similar although somewhat smaller decrease in insulin-stimulated glycogen synthesis; however, it did not alter 2-DG uptake, glucose oxidation to CO2, or incorporation into lipids. Studies of insulin signaling in the latter muscles revealed that activation of Akt/protein kinase B (PKB) was diminished by 60%, compared with that of muscles preincubated in a glucose-free medium; whereas activation of phosphatidylinositol (PI) 3-kinase, an upstream regulator of Akt/PKB in the insulin-signaling cascade, and of mitogen-activated protein (MAP) kinase, a parallel signal, was unaffected. Immunoblots demonstrated that this was not due to a change in Akt/PKB abundance. The results indicate that hyperglycemia-induced insulin resistance can be studied in rat skeletal muscle in vitro. They suggest that impairment of insulin action in these muscles is related to inhibition of Akt/PKB by events that do not affect PI 3-kinase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app