Add like
Add dislike
Add to saved papers

Higher content of insulin-like growth factor-I in dystrophic mdx mouse: potential role in the spontaneous regeneration through an electrophysiological investigation of muscle function.

Insulin-like growth factor-I (IGF-I) is known to promote proliferation and differentiation of muscle cells during growth and regeneration. Both these conditions are characterized by acquisition of specialized muscle functions, such as a large macroscopic chloride conductance (GCl), a parameter that is a target of growth hormone (GH)/IGF-I axis action on skeletal muscle. The present study has been aimed at evaluating the role of IGF-I in the spontaneous regeneration occurring in hind limb muscle of dystrophic mdx mouse. IGF-I levels have been measured in hind limb muscles, plasma and liver of mdx and control mice of 8-10 weeks and 5 months of age by radioimmunoassay. In parallel the biophysical and pharmacological properties of muscle chloride channels of extensor digitorum longus (EDL) muscle fibers of mice belonging to the same age-group have been measured electrophysiologically in vitro. At 8-10 weeks of age, significantly greater amounts of IGF-I were found in plasma and hind limb muscles of mdx mice with respect to controls. Such a difference was only just detectable and no longer statistically significant at 5 months of age. No differences were found in hepatic IGF-I levels at either age. The EDL muscle fibers of mdx mice at 8-10 weeks of age were characterized by higher GCl values and by a different pharmacological sensitivity to the enantiomers of 2-(p-chlorophenoxy)-propionic acid (CPP), specific chloride channel ligands, with respect to age-matched controls. However, these differences were no longer detected at 5 months of age. Our results suggest a role of IGF-I in the high regenerative potential of muscles from mdx mice and support the hypothesis that the biophysical and pharmacological properties of chloride channels of EDL muscle fibers are sensitive indices of the action of regeneration-promoting factors on muscle function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app