JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Human molybdopterin synthase gene: genomic structure and mutations in molybdenum cofactor deficiency type B.

Biosynthesis of the molybdenum cofactor (MoCo) can be divided into (1) the formation of a precursor and (2) the latter's subsequent conversion, by molybdopterin synthase, into the organic moiety of MoCo. These two steps are reflected by the complementation groups A and B and the two formally distinguished types of MoCo deficiency that have an identical phenotype. Both types of MoCo deficiency result in a pleiotropic loss of all molybdoenzyme activities and cause severe neurological damage. MOCS1 is defective in patients with group A deficiency and has been shown to encode two enzymes for early synthesis via a bicistronic transcript with two consecutive open reading frames (ORFs). MOCS2 encodes the small and large subunits of molybdopterin synthase via a single transcript with two overlapping reading frames. This gene was mapped to 5q and comprises seven exons. The coding sequence and all splice site-junction sequences were screened for mutations, in MoCo-deficient patients in whom a previous search for MOCS1 mutations had been negative. In seven of the eight patients whom we investigated, we identified MOCS2 mutations that, by their nature, are most likely responsible for the deficiency. Three different frameshift mutations were observed, with one of them found on 7 of 14 identified alleles. Furthermore, a start-codon mutation and a missense mutation of a highly conserved amino acid residue were found. The locations of the mutations confirm the functional role of both ORFs. One of the patients with identified MOCS2 mutations had been classified as type B, in complementation studies. These findings support the hypothetical mechanism, for both forms of MoCo deficiency, that formerly had been established by cell-culture experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app