JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

DNA-Directed immobilization: efficient, reversible, and site-selective surface binding of proteins by means of covalent DNA-streptavidin conjugates.

Covalent DNA-streptavidin conjugates have been utilized for the reversible and site-selective immobilization of various biotinylated enzymes and antibodies by DNA-directed immobilization (DDI). Biotinylated alkaline phosphatase, beta-galactosidase, and horseradish peroxidase as well as biotinylated anti-mouse and anti-rabbit immunoglobulins have been coupled to the DNA-streptavidin adapters by simple, two-component incubation and the resulting preconjugates were allowed to hybridize to complementary, surface-bound capture oligonucleotides. Quantitative measurements on microplates indicate that DDI proceeds with a higher immobilization efficiency than conventional immobilization techniques, such as the binding of the biotinylated proteins to streptavidin-coated surfaces or direct physisorption. These findings can be attributed to the reversible formation of the rigid, double-stranded DNA spacer between the surface and the proteins. Moreover, BIAcore measurements demonstrate that DDI allows a reversible functionalization of sensor surfaces with reproducible amounts of proteins. Ultimately, the simultaneous immobilization of different compounds using microstructured oligonucleotide arrays as immobilization matrices demonstrate that DDI proceeds with site selectivity due to the unique specificity of Watson-Crick base pairing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app