Comparative Study
Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Effect of a NOS inhibitor, L-NMMA, on the contractile function of reperfused skeletal muscle.

The authors investigated the effect of NG-monomethyl-L-arginine acetate (L-NMMA), a nitric oxide synthase (NOS) inhibitor, on the contractile function of skeletal muscle following ischemia/reperfusion (I/R) injury. The extensor digitorum longus (EDL) muscles of 50 rats were divided into seven groups. Contractile function in non-ischemic EDL did not change statistically significantly with L-NMMA infusion. I/R (1.5 hr I and 3 hr R) significantly decreased EDL contractile function, with an average maximal twitch force of 56 percent of the contralateral normal muscle force and isometric tetanic contractile forces between 47 and 84 percent at four different stimulation frequencies. Following L-NMMA administration at three different dosages, contractile function of I/R muscle decreased in a dose-dependent manner. The highest dosage of L-NMMA (10 micromol/min) reduced the average maximal twitch force to 15 percent and the isometric tetanic contractile forces to between 10 to 23 percent. Histologic evaluation revealed increased edema, neutrophil infiltration, and muscle-fiber necrosis in L-NMMA-infused EDL, compared to the controls. 1) Skeletal muscle contractile function was dose-dependently decreased with the administration of L-NMMA during I/R. 2) The concentrations of L-NMMA used in this study did not influence the function of non-ischemic EDL. These findings suggest that reduction of NO production during I/R is damaging to skeletal muscle function and would impair successful functional outcomes in microsurgical replantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app