Tatiana Porto Santos, Cesare M Cejas, Rosiane Lopes Cunha, Patrick Tabeling
Coalescence is the most widely demonstrated mechanism for destabilizing emulsion droplets in microfluidic chambers. However, we find that depending on the channel wall surface functionalization, surface zeta potential, type of surfactant, characteristics of the oil as a dispersed phase, or even the presence of externally-induced stress, other different destabilization mechanisms can occur in subtle ways. In general, we observe four regimes leading to destabilization of concentrated emulsions: (i) coalescence, (ii) emulsion bursts, (iii) a combination of the two first mechanisms, attributed to the simultaneous occurrence of coalescence and emulsion bursts; and (iv) compaction of the droplet network that eventually destabilizes to fracture-like behavior...
January 5, 2021: Soft Matter