Read by QxMD icon Read

Vesicular trafficking

Robert Faris, Marlena Merling, Shelby E Andersen, Cheryl A Dooley, Ted Hackstadt, Mary M Weber
Chlamydial infection requires the formation of a membrane-bound vacuole, termed the inclusion, that undergoes extensive interactions with select host organelles. The importance of the Inc protein CT229 in the formation and maintenance of the chlamydial inclusion was recently highlighted by studies demonstrating that its absence during infection results in reduced bacterial replication, premature inclusion lysis, and host cell death. Previous reports have indicated that CT229 binds Rab GTPases; however, the physiological implications of this interaction are unknown...
March 19, 2019: Cell Reports
Ricardo A Battaglino, Prakash Jha, Farhath Sultana, Weimin Liu, Leslie R Morse
Osteoclasts employ highly specialized intracellular trafficking controls for bone resorption and organelle homeostasis. The sorting nexin Snx10 is a (Phosphatidylinositol 3-phosphate) PI3P-binding protein, which localizes to osteoclast early endosomes. Osteoclasts from humans and mice lacking functional Snx10 are severely dysfunctional. They show marked impairments in endocytosis, extracellular acidification, ruffled border formation, and bone resorption, suggesting that Snx10 regulates membrane trafficking...
March 19, 2019: Journal of Cellular Biochemistry
Jean Piero Margaria, Edoardo Ratto, Luca Gozzelino, Huayi Li, Emilio Hirsch
Phosphorylation of inositol phospholipids by the family of phosphoinositide 3-kinases (PI3Ks) is crucial in controlling membrane lipid composition and regulating a wide range of intracellular processes, which include signal transduction and vesicular trafficking. In spite of the extensive knowledge on class I PI3Ks, recent advances in the study of the three class II PI3Ks (PIK3C2A, PIK3C2B and PIK3C2G) reveal their distinct and non-overlapping cellular roles and localizations. By finely tuning membrane lipid composition in time and space among different cellular compartments, this class of enzymes controls many cellular processes, such as proliferation, survival and migration...
March 15, 2019: Biomolecules
Michinori Koebis, Shinji Urata, Yo Shinoda, Shigeo Okabe, Tatsuya Yamasoba, Kazuki Nakao, Atsu Aiba, Teiichi Furuichi
Lysosome-associated membrane protein 5 (LAMP5) is a mammalian ortholog of the Caenorhabditis elegans protein, UNC-46, which functions as a sorting factor to localize the vesicular GABA transporter UNC-47 to synaptic vesicles. In the mouse forebrain, LAMP5 is expressed in a subpopulation of GABAergic neurons in the olfactory bulb and the striato-nigral system, where it is required for fine-tuning of GABAergic synaptic transmission. Here we focus on the prominent expression of LAMP5 in the brainstem and spinal cord and suggest a role for LAMP5 in these brain regions...
March 12, 2019: Molecular Brain
Jillian H Kluss, Adamantios Mamais, Mark R Cookson
The past two decades in research has revealed the importance of leucine-rich repeat kinase 2 (LRRK2) in both monogenic and sporadic forms of Parkinson's disease (PD). In families, mutations in LRRK2 can cause PD with age-dependent but variable penetrance and genome-wide association studies have found variants of the gene that are risk factors for sporadic PD. Functional studies have suggested that the common mechanism that links all disease-associated variants is that they increase LRRK2 kinase activity, albeit in different ways...
March 5, 2019: Biochemical Society Transactions
Yukari Yabuki, Atsuko Ikeda, Misako Araki, Kentaro Kajiwara, Keiko Mizuta, Kouichi Funato
Reduced ribosome biogenesis in response to environmental conditions is a key feature of cell adaptation to stress. For example, ribosomal genes are transcriptionally repressed when cells are exposed to tunicamycin, a protein glycosylation inhibitor that induces endoplasmic reticulum stress and blocks vesicular trafficking in the secretory pathway. Here, we describe a novel regulatory model, in which tunicamycin-mediated stress induces the accumulation of long-chain sphingoid bases, and subsequent activation of Pkh1/2 signaling, which leads to decreased expression of ribosomal protein genes via downstream effectors Pkc1 and Sch9...
March 1, 2019: Genetics
Daniel Alberto Girón-Pérez, Zayda Lizbeth Piedra-Quintero, Leopoldo Santos-Argumedo
Connections established between cytoskeleton and plasma membrane are essential in cellular processes such as cell migration, vesicular trafficking, and cytokinesis. Class I myosins are motor proteins linking the actin-cytoskeleton with membrane phospholipids. Previous studies have implicated these molecules in cell functions including endocytosis, exocytosis, release of extracellular vesicles and the regulation of cell shape and membrane elasticity. In immune cells, those proteins also are involved in the formation and maintenance of immunological synapse-related signaling...
March 1, 2019: Journal of Leukocyte Biology
Shangkun Qiu, Bin Zeng
Oxysterol-binding protein is an important non-vesicular trafficking protein involved in the transportation of lipids in eukaryotic cells. Oxysterol-binding protein is identified as oxysterol-binding protein-related proteins (ORPs) in mammals and oxysterol-binding protein homologue (Osh) in yeast. Research has described the function and structure of oxysterol-binding protein in mammals and yeast, but little information about the protein's structure and function in filamentous fungi has been reported. This article focuses on recent advances in the research of Osh proteins in yeast and filamentous fungi, such as Aspergillus oryzae, Aspergillus nidulans, and Candida albicans...
January 9, 2019: International Microbiology: the Official Journal of the Spanish Society for Microbiology
Masafumi Shimojo, Joseph Madara, Sandra Pankow, Xinran Liu, John Yates, Thomas C Südhof, Anton Maximov
Synaptotagmin-11 (Syt11) is a Synaptotagmin isoform that lacks an apparent ability to bind calcium, phospholipids, or SNARE proteins. While human genetic studies have linked mutations in the Syt11 gene to schizophrenia and Parkinson's disease, the localization or physiological role of Syt11 remain unclear. We found that in neurons, Syt11 resides on abundant vesicles that differ from synaptic vesicles and resemble trafficking endosomes. These vesicles recycle via the plasma membrane in an activity-dependent manner, but their exocytosis is slow and desynchronized...
February 26, 2019: Genes & Development
Howard S Young, M Joanne Lemieux
No abstract text is available yet for this article.
February 25, 2019: EMBO Reports
Juliette Jouhet, Valérie Gros, Morgane Michaud
Membrane biogenesis requires an extensive traffic of lipids between different cell compartments. Two main pathways, the vesicular and non-vesicular pathways, are involved in such a process. Whereas the mechanisms involved in vesicular trafficking are well understood, fewer is known about non-vesicular lipid trafficking, particularly in plants. This pathway involves the direct exchange of lipids at membrane contact sites (MCSs) between organelles. In plants, an extensive traffic of the chloroplast-synthesized digalactosyldiacylglycerol (DGDG) to mitochondria occurs during phosphate starvation...
2019: Methods in Molecular Biology
Yasushi Tamura, Rieko Kojima, Toshiya Endo
A number of previous studies have shown that phospholipid molecules come and go between the endoplasmic reticulum (ER) and mitochondrial membranes while the molecular basis of non-vesicular phospholipid transport is still not understood well. In this chapter, we describe an optimized method that uses membrane fractions isolated from yeast cells to directly analyze phospholipid transport between the ER and mitochondria. With this assay, we are able to assess not only the ER-to-mitochondria but also mitochondria-to-ER transports at the same time...
2019: Methods in Molecular Biology
M Bizkarguenaga, L Gomez-Santos, J F Madrid, F J Sáez, E Alonso
BACKGROUND: Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC) is a Golgi protein that plays a role in vesicular transport and intracellular protein trafficking and degradation. Mice deficient in GOPC protein have globozoospermia and are infertile. The germ cell nuclear factor (GCNF) is a member of the nuclear receptor superfamily which is expressed in male germ cells, from spermatocytes and spermatids, both in the nucleus and the acrosomal region. It is not known if its expression could be altered in Gopc-/- mice with defective acrosomes...
February 20, 2019: Andrology
Nicole Infarinato
Sharma investigates vesicular trafficking to lysosomes and how pathogens hijack the endolysosomal system during infection.
February 19, 2019: Journal of Cell Biology
Jinzhong Zhang, Jing He, Jennifer L Johnson, Farhana Rahman, Evripidis Gavathiotis, Ana Maria Cuervo, Sergio D Catz
Cystinosis is a lysosomal storage disorder caused by defects in CTNS , the gene that encodes the lysosomal cystine transporter cystinosin. Patients with nephropathic cystinosis are characterized by endocrine defects, defective proximal tubule cell (PTC) function, the development of Fanconi syndrome and, eventually, end-stage renal disease. Kidney disease is developed despite the use of cysteamine, a drug that decreases lysosomal cystine overload but fails to correct overload-independent defects. Chaperone-mediated autophagy (CMA), a selective form of autophagy, is defective in cystinotic mouse fibroblasts, and treatment with cysteamine is unable to correct CMA defects in vivo , but whether the vesicular trafficking mechanisms that lead to defective CMA in cystinosis are manifested in human PTCs is not currently known and whether PTC-specific mechanisms are corrected upon CMA upregulation remains to be elucidated...
2019: Frontiers in Endocrinology
Jian Ma, Yongfei Wang, Xiaoding Ma, Lingzhi Meng, Ruonan Jing, Fan Wang, Shuai Wang, Zhijun Cheng, Xin Zhang, Ling Jiang, Jiulin Wang, Jie Wang, Zhichao Zhao, Xiuping Guo, Qibing Lin, Fuqing Wu, Shanshan Zhu, Wu Chuanyin, Yulong Ren, Cailin Lei, Huqu Zhai, Jianmin Wan
Lesion mimic mutants that exhibit spontaneous hypersensitive response (HR)-like necrotic lesions are ideal experimental systems for elucidating molecular mechanisms involved in plant cell death and defense responses. Here we report identification of a rice lesion mimic mutant, spotted leaf 35 (spl35), and cloning of the causal gene by TAIL-PCR strategy. spl35 exhibited decreased chlorophyll content, higher accumulation of H2 O2 , up-regulated expression of defense-related marker genes, and enhanced resistance to both fungal and bacterial pathogens of rice...
February 16, 2019: Plant Biotechnology Journal
Pau Doñate-Macián, Elena Álvarez-Marimon, Francesc Sepulcre, José Luis Vázquez-Ibar, Alex Perálvarez-Marín
Constitutive or regulated membrane protein trafficking is a key cell biology process. Transient receptor potential channels are somatosensory proteins in charge of detecting several physical and chemical stimuli, thus requiring fine vesicular trafficking. The membrane proximal or pre-S1 domain (MPD) is a highly conserved domain in transient receptor potential channels from the vanilloid (TRPV) subfamily. MPD shows traits corresponding to protein-protein and lipid-protein interactions, and protein regulatory regions...
February 5, 2019: International Journal of Molecular Sciences
Gaochun Zhu, Ting Peng, Chaohua Peng, He Li
Chronic lead (Pb) exposure has been shown to reduce the expression of some synaptic proteins which are involved in vesicular trafficking and affect presynaptic neurotransmitter release. However, the precise mechanisms by Pb impairs neurotransmitter release are still not well defined. In the current study, we aimed to elucidate the changes of Huntingtin-associated protein 1 (HAP1) in Pb exposed rats and PC12 cells models and its molecular mechanism. Repressor element-1 silencing transcription (REST) modulates the expression of genes containing the repressor element 1 (RE-1) cis-regulatory DNA sequence...
February 8, 2019: Toxicology Letters
Alkmini A Papadopoulou, Stephan A Müller, Torben Mentrup, Merav D Shmueli, Johannes Niemeyer, Martina Haug-Kröper, Julia von Blume, Artur Mayerhofer, Regina Feederle, Bernd Schröder, Stefan F Lichtenthaler, Regina Fluhrer
Members of the GxGD-type intramembrane aspartyl proteases have emerged as key players not only in fundamental cellular processes such as B-cell development or protein glycosylation, but also in development of pathologies, such as Alzheimer's disease or hepatitis virus infections. However, one member of this protease family, signal peptide peptidase-like 2c (SPPL2c), remains orphan and its capability of proteolysis as well as its physiological function is still enigmatic. Here, we demonstrate that SPPL2c is catalytically active and identify a variety of SPPL2c candidate substrates using proteomics...
February 7, 2019: EMBO Reports
Morgane Michaud, Juliette Jouhet
The biogenesis of cellular membranes involves an important traffic of lipids from their site of synthesis to their final destination. Lipid transfer can be mediated by vesicular or non-vesicular pathways. The non-vesicular pathway requires the close apposition of two membranes to form a functional platform, called membrane contact sites (MCSs), where lipids are exchanged. These last decades, MCSs have been observed between virtually all organelles and a role in lipid transfer has been demonstrated for some of them...
2019: Frontiers in Plant Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"