Wenfu Zheng, Xingyu Jiang
In native tissues, various cell types organize and spatiotemporally function and communicate with neighboring or remote cells in a highly regulated way. How can we replicate these amazing functional structures in vitro? From the view of a chemist, the heterogeneous cells and extracellular matrix (ECM) could be regarded as various chemical substrate materials for "synthetic" reactions during tissue engineering. But how can we accelerate these reactions? Microfluidics provides ideal solutions. Microfluidics could be metaphorically regarded as a miniature "biofactory", whereas the on-chip critical chemical cues such as biomolecule gradients and physical cues such as geometrical confinement, topological guidance, and mechanical stimulations, along with the external stimulations such as light, electricity, acoustics, and magnetics, could be regarded as "catalytic cues" which can accelerate the "synthetic reactions" by precisely and effectively manipulating a series of cell behaviors including cell adhesion, migration, growth, proliferation, differentiation, cell-cell interaction, and cell-matrix interaction to reduce activation energy of the "synthetic reactions"...
November 20, 2018: Accounts of Chemical Research