Read by QxMD icon Read


Yan Lai, Alayne Cuzick, Xueqing Maggie Lu, Jianqiang Wang, Neerja Katiyar, Tokuji Tsuchiya, Karine Le Roch, John M McDowell, Eric Holub, Thomas Eulgem
The NLR-receptor RPP7 mediates race-specific immunity in Arabidopsis. Previous screens for enhanced downy mildew (edm) mutants identified the co-chaperone SGT1b (EDM1) and the PHD-finger protein EDM2 as critical regulators of RPP7. Here, we describe a third edm mutant compromised in RPP7 immunity, edm3. EDM3 encodes a nuclear-localized protein featuring an RNA-recognition motif. Like EDM2, EDM3 promotes histone H3 lysine 9 dimethylation (H3K9me2) at RPP7. Global profiling of H3K9me2 showed EDM3 to affect this silencing mark at a large set of loci...
November 8, 2018: Plant Journal: for Cell and Molecular Biology
Xue-Cheng Zhang, Yves A Millet, Zhenyu Cheng, Jenifer Bush, Frederick M Ausubel
Plant hormones play pivotal roles in growth, development and stress responses. Although it is essential to our understanding of hormone signalling, how plants maintain a steady state level of hormone receptors is poorly understood. We show that mutation of the Arabidopsis thaliana co-chaperone SGT1b impairs responses to the plant hormones jasmonate, auxin and gibberellic acid, but not brassinolide and abscisic acid, and that SGT1b and its homologue SGT1a are involved in maintaining the steady state levels of the F-box proteins COI1 and TIR1, receptors for jasmonate and auxin, respectively...
2015: Nature Plants
Il Hwan Lee, In Chul Lee, Jeongsik Kim, Jin Hee Kim, Eui-Hwan Chung, Hyo Jung Kim, Su Jin Park, Yong Min Kim, Sin Kyu Kang, Hong Gil Nam, Hye Ryun Woo, Pyung Ok Lim
Leaf senescence is not only primarily governed by developmental age but also influenced by various internal and external factors. Although some genes that control leaf senescence have been identified, the detailed regulatory mechanisms underlying integration of diverse senescence-associated signals into the senescence programs remain to be elucidated. To dissect the regulatory pathways involved in leaf senescence, we isolated the not oresara1-1 (nore1-1) mutant showing accelerated leaf senescence phenotypes from an EMS-mutagenized Arabidopsis thaliana population...
October 2016: Physiologia Plantarum
Eve Kaurilind, Enjun Xu, Mikael Brosché
BACKGROUND: To survive in a changing environment plants constantly monitor their surroundings. In response to several stresses and during photorespiration plants use reactive oxygen species as signaling molecules. The Arabidopsis thaliana catalase2 (cat2) mutant lacks a peroxisomal catalase and under photorespiratory conditions accumulates H2O2, which leads to activation of cell death. METHODS: A cat2 double mutant collection was generated through crossing and scored for cell death in different assays...
2015: BMC Genomics
Jingyan Liu, Haibian Yang, Fei Bao, Kevin Ao, Xiaoyan Zhang, Yuelin Zhang, Shuhua Yang
Plant responses to low temperature are tightly associated with defense responses. We previously characterized the chilling-sensitive mutant chs3-1 resulting from the activation of the Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR)-type resistance (R) protein harboring a C-terminal LIM (Lin-11, Isl-1 and Mec-3 domains) domain. Here we report the identification of a suppressor of chs3, ibr5-7 (indole-3-butyric acid response 5), which largely suppresses chilling-activated defense responses...
October 2015: PLoS Genetics
Fang Xu, Chipan Zhu, Volkan Cevik, Kaeli Johnson, Yanan Liu, Kee Sohn, Jonathan D Jones, Eric B Holub, Xin Li
Plant innate immunity depends on the function of a large number of intracellular immune receptor proteins, the majority of which are structurally similar to mammalian nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) proteins. CHILLING SENSITIVE 3 (CHS3) encodes an atypical Toll/Interleukin 1 Receptor (TIR)-type NLR protein with an additional Lin-11, Isl-1 and Mec-3 (LIM) domain at its C-terminus. The gain-of-function mutant allele chs3-2D exhibits severe dwarfism and constitutively activated defense responses, including enhanced resistance to virulent pathogens, high defence marker gene expression, and salicylic acid accumulation...
2015: Scientific Reports
Mikael Brosché, Tiina Blomster, Jarkko Salojärvi, Fuqiang Cui, Nina Sipari, Johanna Leppälä, Airi Lamminmäki, Gloria Tomai, Shaman Narayanasamy, Ramesha A Reddy, Markku Keinänen, Kirk Overmyer, Jaakko Kangasjärvi
Plant responses to changes in environmental conditions are mediated by a network of signaling events leading to downstream responses, including changes in gene expression and activation of cell death programs. Arabidopsis thaliana RADICAL-INDUCED CELL DEATH1 (RCD1) has been proposed to regulate plant stress responses by protein-protein interactions with transcription factors. Furthermore, the rcd1 mutant has defective control of cell death in response to apoplastic reactive oxygen species (ROS). Combining transcriptomic and functional genomics approaches we first used microarray analysis in a time series to study changes in gene expression after apoplastic ROS treatment in rcd1...
February 2014: PLoS Genetics
Tae-Houn Kim, Hans-Henning Kunz, Saikat Bhattacharjee, Felix Hauser, Jiyoung Park, Cawas Engineer, Amy Liu, Tracy Ha, Jane E Parker, Walter Gassmann, Julian I Schroeder
In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants...
December 2012: Plant Cell
Yijian He, Eui-Hwan Chung, David A Hubert, Pablo Tornero, Jeffery L Dangl
Plants utilize proteins containing nucleotide binding site (NB) and leucine-rich repeat (LRR) domains as intracellular innate immune receptors to recognize pathogens and initiate defense responses. Since mis-activation of defense responses can lead to tissue damage and even developmental arrest, proper regulation of NB-LRR protein signaling is critical. RAR1, SGT1, and HSP90 act as regulatory chaperones of pre-activation NB-LRR steady-state proteins. We extended our analysis of mutants derived from a rar1 suppressor screen and present two allelic rar1 suppressor (rsp) mutations of Arabidopsis COI1...
2012: PLoS Genetics
Jiyoung Lee, Gail M Teitzel, Jean T Greenberg
Type III secreted effectors shape the potential of bacterial pathogens to cause disease on plants. Some effectors affect pathogen growth only in specific niches. For example, HopZ3 causes reduced epiphytic growth of Pseudomonas syringae strain B728a on Nicotiana benthamiana. This raises the question of whether genes important for effector-triggered disease resistance are needed for responses to effectors whose major effect is in the epiphytic niche. We report that SGT1b, a protein known to be important for defense activation, is essential for HopZ3-mediated suppression of PsyB728a epiphytic growth...
September 1, 2012: Plant Signaling & Behavior
Ajith Anand, Clemencia M Rojas, Yuhong Tang, Kirankumar S Mysore
• Successful genetic transformation of plants by Agrobacterium tumefaciens requires the import of bacterial T-DNA and virulence proteins into the plant cell that eventually form a complex (T-complex). The essential components of the T-complex include the single stranded T-DNA, bacterial virulence proteins (VirD2, VirE2, VirE3 and VirF) and associated host proteins that facilitate the transfer and integration of T-DNA. The removal of the proteins from the T-complex is likely achieved by targeted proteolysis mediated by VirF and the plant ubiquitin proteasome complex...
July 2012: New Phytologist
Yasuhiro Ishiga, Srinivasa Rao Uppalapati, Takako Ishiga, Kirankumar S Mysore
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), that causes bacterial speck disease on tomato, produces a non-host-specific virulence effector, coronatine (COR). COR functions as a jasmonic acid (JA)-isoleucine mimic in planta and has multiple roles in the pathogenicity of Pst DC3000. One of the hallmarks of bacterial speck disease on tomato is the formation of necrotic lesions surrounded by chlorosis and COR is required for disease development. However, the molecular basis of COR-mediated disease symptom development including chlorosis and necrosis is still largely unknown...
July 2011: Plant Signaling & Behavior
Tae-Houn Kim, Felix Hauser, Tracy Ha, Shaowu Xue, Maik Böhmer, Noriyuki Nishimura, Shintaro Munemasa, Katharine Hubbard, Nora Peine, Byeong-Ha Lee, Stephen Lee, Nadia Robert, Jane E Parker, Julian I Schroeder
Coordinated regulation of protection mechanisms against environmental abiotic stress and pathogen attack is essential for plant adaptation and survival. Initial abiotic stress can interfere with disease-resistance signaling [1-6]. Conversely, initial plant immune signaling may interrupt subsequent abscisic acid (ABA) signal transduction [7, 8]. However, the processes involved in this crosstalk between these signaling networks have not been determined. By screening a 9600-compound chemical library, we identified a small molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that rapidly downregulates ABA-dependent gene expression and also inhibits ABA-induced stomatal closure...
June 7, 2011: Current Biology: CB
Wei Rong, Feng Feng, Jianmin Zhou, Chaozu He
Xanthomonas campestris pv. campestris, the causal agent of black rot disease, depends on its type III secretion system (TTSS) to infect cruciferous plants, including Brassica oleracea, B. napus and Arabidopsis. Previous studies on the Arabidopsis-Pseudomonas syringae model pathosystem have indicated that a major function of TTSS from virulent bacteria is to suppress host defences triggered by pathogen-associated molecular patterns. Similar analyses have not been made for the Arabidopsis-X. campestris pv. campestris pathosystem...
November 2010: Molecular Plant Pathology
Yingzhong Li, Shuxin Li, Dongling Bi, Yu Ti Cheng, Xin Li, Yuelin Zhang
Plant defense responses need to be tightly regulated to prevent auto-immunity, which is detrimental to growth and development. To identify negative regulators of Resistance (R) protein-mediated resistance, we screened for mutants with constitutive defense responses in the npr1-1 background. Map-based cloning revealed that one of the mutant genes encodes a conserved TPR domain-containing protein previously known as SRFR1 (SUPPRESSOR OF rps4-RLD). The constitutive defense responses in the srfr1 mutants in Col-0 background are suppressed by mutations in SNC1, which encodes a TIR-NB-LRR (Toll Interleukin1 Receptor-Nucleotide Binding-Leu-Rich Repeat) R protein...
2010: PLoS Pathogens
Srinivasa Rao Uppalapati, Yasuhiro Ishiga, Choong-Min Ryu, Takako Ishiga, Keri Wang, Laurent D Noël, Jane E Parker, Kirankumar S Mysore
• Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) causes an economically important bacterial speck disease on tomato and produces symptoms with necrotic lesions surrounded by chlorosis. The chlorosis is mainly attributed to a jasmonic acid (JA)-isoleucine analogue, coronatine (COR), produced by Pst DC3000. However, the molecular processes underlying lesion development and COR-induced chlorosis are poorly understood. • In this study, we took advantage of a chlorotic phenotype elicited by COR on Nicotiana benthamiana leaves and virus-induced gene silencing (VIGS) as a rapid reverse genetic screening tool and identified a role for SGT1 (suppressor of G2 allele of skp1) in COR-induced chlorosis...
January 2011: New Phytologist
Mahmut Tör, Antony Yemm, Eric Holub
SUMMARY Within the last 10 years, numerous R genes have been cloned from natural genetic variation in model as well as crop plants, and these have been classified according to their motifs. Some of the downstream signalling components have also been identified by artificial mutagenesis. Recently, cloning of three of these signalling genes (COI1, RAR1 and SGT1b) from Arabidopsis, barley and tobacco have helped uncover the physiological link between defence signalling and ubiquitin-mediated protein degradation...
July 1, 2003: Molecular Plant Pathology
Haibian Yang, Yiting Shi, Jingyan Liu, Lin Guo, Xiaoyan Zhang, Shuhua Yang
Low temperature is one of environmental factors that restrict plant growth homeostasis and plant-pathogen interactions. Recent studies suggest a link between temperature responses and defense responses; however, the underlying molecular mechanisms remain unclear. In this study, the chilling sensitive 3 (chs3-1) mutant in Arabidopsis was characterized. chs3-1 plants showed arrested growth and chlorosis when grown at 16 degrees C or when shifted from 22 to 4 degrees C. chs3-1 plants also exhibited constitutively activated defense responses at 16 degrees C, which were alleviated at a higher temperature (22 degrees C)...
July 2010: Plant Journal: for Cell and Molecular Biology
Guoyong Xu, Ning Sui, Yang Tang, Ke Xie, Yizhen Lai, Yule Liu
*The hairpin-based RNA interference (RNAi) technique plays an important role in exploring gene function in plants. Although there are several methods for making hairpin RNA (hpRNA) constructs, these methods usually need multiple relatively laborious, time-consuming or high-cost cloning steps. Here we describe a one-step, zero-background ligation-independent cloning (OZ-LIC) method for making intron-containing hpRNA (ihpRNA) constructs by our vector pRNAi-LIC. *To generate the ihpRNA constructs with zero-background, this method only requires treating two PCR products of target gene flanked with different LIC sequences and SmaI-linearized pRNAi-LIC vector by T4 DNA polymerase respectively, and then transforming these treated DNA mixture into Escherichia coli...
July 2010: New Phytologist
Ziguo Zhang, Andrea Lenk, Mats X Andersson, Torben Gjetting, Carsten Pedersen, Mads E Nielsen, Mari-Anne Newman, Bi-Huei Hou, Shauna C Somerville, Hans Thordal-Christensen
The lesion-mimic Arabidopsis mutant, syp121 syp122, constitutively expresses the salicylic acid (SA) signaling pathway and has low penetration resistance to powdery mildew fungi. Genetic analyses of the lesion-mimic phenotype have expanded our understanding of programmed cell death (PCD) in plants. Inactivation of SA signaling genes in syp121 syp122 only partially rescues the lesion-mimic phenotype, indicating that additional defenses contribute to the PCD. Whole genome transcriptome analysis confirmed that SA-induced transcripts, as well as numerous other known pathogen-response transcripts, are up-regulated after inactivation of the syntaxin genes...
May 2008: Molecular Plant
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"