Read by QxMD icon Read

pancreatitis AND insulin

Mohammad Keyvanloo Shahrestanaki, Fatemeh Panahi Arasi, Mahmoud Aghaei
Signaling through A2a adenosine receptor specifically prevent pancreatic β-cells (PBCs) loses under diabetogenic conditions. However, signaling mediators of this receptor in PBCs remained unidentified. Thus, we aimed to investigate the possible involvement of PKA/Akt/IPP-1/CREB pathway in MIN6 β-cells. In addition, we investigated IPP-1 role in A2a receptor signaling pathway. The expression of A2a receptor in MIN6 cell line was evaluated by RT-PCR and its functionality confirmed by quantification of cAMP in response to the CGS 21680, an A2a receptor agonist...
February 14, 2019: European Journal of Pharmacology
Anand Kumar Sharma, Radhika Khandelwal, Yogendra Sharma
Secretagogin (SCGN) is a calcium sensor protein enriched in neuroendocrine cells in general and pancreatic β-cells in particular. SCGN regulates insulin secretion through several Ca2+ -dependent interactions. Recent studies implicate SCGN in the β-cell physiology and extracellular insulin function, making it an intriguing candidate in diabetes research. Here, we propose a conjoining theme of diversified SCGN function in diabetes pathology. In our opinion, SCGN is an attractive therapeutic candidate ascribed by its role in β-cell maintenance and neuronal functions and in the efficacy of insulin...
February 13, 2019: Trends in Endocrinology and Metabolism: TEM
Andrea De Gaetano, Claudio Gaz, Simona Panunzi
Published compact and extended models of the glucose-insulin physiologic control system are compared, in order to understand why a specific functional form of the compact model proved to be necessary for a satisfactory representation of acute perturbation experiments such as the Intra Venous Glucose Tolerance Test (IVGTT). A spectrum of IVGTT's of virtual subjects ranging from normal to IFG to IGT to frank T2DM were simulated using an extended model incorporating the population-of-controllers paradigm originally hypothesized by Grodsky, and proven to be able to capture a wide array of experimental results from heterogeneous perturbation procedures...
2019: PloS One
Caio Jordão Teixeira, Junia Carolina Santos-Silva, Dailson Nogueira de Souza, Alex Rafacho, Gabriel Forato Anhe, Silvana Bordin
Pancreatic islets from pregnant rats develop a transitory increase in the pancreatic β-cell proliferation rate and mass. Increased apoptosis during early lactation contributes to the rapid reversal of those morphological changes. Exposure to synthetic glucocorticoids during pregnancy has been previously reported to impair insulin secretion, but its impacts on pancreatic islet morphological changes during pregnancy and lactation have not been described. To address this issue, we assessed the morphological and molecular characteristics of pancreatic islets from rats that underwent undisturbed pregnancy (CTL) or were treated with dexamethasone between the 14th and 19th days of pregnancy (DEX)...
February 1, 2019: Endocrine Connections
Yang Xu, Yan Huang, Yibing Guo, Yicheng Xiong, Shajun Zhu, Liancheng Xu, Jingjing Lu, Xiaohong Li, Jian Wan, Yuhua Lu, Zhiwei Wang
BACKGROUND: The regulatory mechanism of insulin-producing cells (IPCs) differentiation from induced pluripotent stem cells (iPSCs) in vitro is very important in the phylogenetics of pancreatic islets, the molecular pathogenesis of diabetes, and the acquisition of high-quality pancreatic β-cells derived from stem cells for cell therapy. METHODS: miPSCs were induced for IPCs differentiation. miRNA microarray assays were performed by using total RNA from our iPCs-derived IPCs containing undifferentiated iPSCs and iPSCs-derived IPCSs at day 4, day 14, and day 21 during step 3 to screen the differentially expressed miRNAs (DEmiRNAs) related to IPCs differentiation, and putative target genes of DEmiRNAs were predicted by bioinformatics analysis...
February 15, 2019: Stem Cell Research & Therapy
Israa Mohammad Al-Amily, Pontus Dunér, Leif Groop, Albert Salehi
We have recently shown that the G protein-coupled receptor 142 (GPR142) is expressed in both rodent and human pancreatic β-cells. Herein, we investigated the cellular distribution of GPR142 within islets and the effects of selective agonists of GPR142 on glucose-stimulated insulin secretion (GSIS) in the mouse islets and INS-1832/13 cells. Double-immunostaining revealed that GPR142 immunoreactivity in islets mainly occurs in insulin-positive cells. Potentiation of GSIS by GPR142 activation was accompanied by increased cAMP content in INS-1832/13 cells...
February 15, 2019: Pflügers Archiv: European Journal of Physiology
S Sucharita, V Ashwini, J S Prabhu, S T Avadhany, V Ayyar, G Bantwal
Background: Circulating microRNA (miRNA/miR) levels are emerging out as markers of tissue level changes; however, their role in type 2 diabetes (T2D) needs to be explored. The study aimed to compare the circulating levels of the miRNA (miR9, miR30d, miR1, miR133a, miR29a, miR143) between T2D and gender matched controls and also to evaluate the strength of association between circulating miRNAs and beta cell function/insulin resistance among Indians with T2D. Subjects and Methods: Thirty T2D (25-60 years) and their gender matched controls ( n = 30) were recruited...
November 2018: Indian Journal of Endocrinology and Metabolism
Çiğdem Yücel, Yeşim Altintaş, Zelihagül Değim, Şükran Yılmaz, Taibe Arsoy, Levent Altıntaş, Can Çokçalışkan, Mahmut Sözmen
This study aims to investigate and compare the effects of insulin and embryonic stem-cell (ESC) loaded liposomes (LPs) and nanocochleate formulations and their PEGylated forms on the glucose levels. All formulations were characterized considering particle size, zeta potential, polydispersity index and encapsulation efficiencies. In-vitro insulin that releases from the formulations was determined using Franz-type diffusion cells. A cytotoxicity test revealed that none of the formulations was toxic to cells in any concentrations...
July 1, 2019: Journal of Nanoscience and Nanotechnology
Thierry Brun, Clarissa Bartley, Pierre Maechler
While the use of fructose as a sweetener and its consumption are associated with increased fat storage prompted by the action of insulin, fructose alone does not acutely stimulate insulin exocytosis from the pancreatic beta-cell, as opposed to the chief secretagogue glucose. We investigated the effects of chronic exposure to fructose on beta-cell function. Our results reveal that chronic fructose induces extracellular ATP signaling in the beta-cell, resulting in the potentiation of glucose-stimulated insulin secretion...
February 13, 2019: Revue Médicale Suisse
Jalal Taneera, Abdul Khader Mohammed, Sarah Dhaiban, Mawieh Hamad, Rashmi B Prasad, Nabil Sulaiman, Albert Salehi
Little is known about the expression and function of Retinoic acid-related orphan receptors (RORA, B, and C) in pancreatic β cells. Here in, we utilized cDNA microarray and RNA sequencing approaches to investigate the expression pattern of ROR receptors in normal and diabetic human pancreatic islets. Possible correlations between RORs expression and HbA1c levels as well as insulin secretory capacity in isolated human islets were evaluated. The impact of RORB and RORC expression on insulin secretion in INS-1 (832/13) cells was validated as well...
February 14, 2019: Islets
Hasan Gençoğlu, Kazim Şahin, Peter M Jones
Background/aim: The polypeptide hormone insulin is essential for the maintenance of whole-body fuel homeostasis, and defects in insulin secretion and/or action are associated with the development of type 1 and type 2 diabetes. The aim of this study was to assess the role of some G-protein coupled receptors (GPCRs), GPR54, GPR56, and GPR75, and cannabinoid receptors CB1R and CB2R, in the regulation of pancreatic β-cell function. Materials and methods: Insulin secretion from mouse insulinoma β-cell line (MIN6) monolayers was assessed via insulin radioimmu-noassay (RIA)...
February 11, 2019: Turkish Journal of Medical Sciences
Kenichiro Furuyama, Simona Chera, Léon van Gurp, Daniel Oropeza, Luiza Ghila, Nicolas Damond, Heidrun Vethe, Joao A Paulo, Antoinette M Joosten, Thierry Berney, Domenico Bosco, Craig Dorrell, Markus Grompe, Helge Ræder, Bart O Roep, Fabrizio Thorel, Pedro L Herrera
Cell-identity switches, in which terminally differentiated cells are converted into different cell types when stressed, represent a widespread regenerative strategy in animals, yet they are poorly documented in mammals. In mice, some glucagon-producing pancreatic α-cells and somatostatin-producing δ-cells become insulin-expressing cells after the ablation of insulin-secreting β-cells, thus promoting diabetes recovery. Whether human islets also display this plasticity, especially in diabetic conditions, remains unknown...
February 13, 2019: Nature
Hui-Xuan Wu, Jun Tang, Long Li, Shi-Ping Liu, Zhi-Guang Zhou, Jian-Xing Yang, De-Wen Yan, Hou-De Zhou
Type 2 diabetic patients are becoming younger and having a tendency to family aggregation, they are easily suspected as maturity-onset diabetes of young (MODY) in the outpatient clinic and send to genetic testing. 9 diabetic families were compared in our outpatient clinic who met the primary diagnosis criteria of MODY. Detailed clinical features and laboratory data including gene sequence were collected and analyzed. The patients met the primary clinical diagnostic criteria of MODY for genetic testing at the first look...
February 13, 2019: Endocrine Journal
Irit Meivar-Levy, Fatima Zoabi, Gil Nardini, Eugenia Manevitz-Mendelson, Gil S Leichner, Oranit Zadok, Michael Gurevich, Eytan Mor, Simona Dima, Irinel Popescu, Aviv Barzilai, Sarah Ferber, Shoshana Greenberger
BACKGROUND: Insulin-dependent diabetes is a multifactorial disorder that could be theoretically cured by functional pancreatic islets and insulin-producing cell (IPC) implantation. Regenerative medicine approaches include the potential for growing tissues and organs in the laboratory and transplanting them when the body cannot heal itself. However, several obstacles remain to be overcome in order to bring regenerative medicine approach for diabetes closer to its clinical implementation; the cells generated in vitro are typically of heterogenic and immature nature and the site of implantation should be readily vascularized for the implanted cells to survive in vivo...
February 13, 2019: Stem Cell Research & Therapy
Andrew W Norris, Katie Larson Ode, Lina Merjaneh, Srinath Sanda, Yaling Yi, Xingshen Sun, John F Engelhardt, Rebecca L Hull
In cystic fibrosis (CF), ductal plugging and acinar loss result in rapid decline of exocrine pancreatic function. This destructive process results in remodeled islets, with only a modest reduction in insulin producing β cells. However, β-cell function is profoundly impaired, with decreased insulin release and abnormal glucose tolerance being present even in infants with CF. Ultimately, roughly half of CF subjects develop diabetes (termed CF-related diabetes, CFRD). Importantly, CFRD increases CF morbidity and mortality via worsening catabolism and pulmonary disease...
February 1, 2019: Journal of Endocrinology
Chun-Lian Tang, Jie-Ning Zou, Rong-Hui Zhang, Zhi-Ming Liu, Cun-Lan Mao
Type 1 diabetes (T1D) is an autoimmune disease in which cells of the immune system destroy pancreatic β cells, which secrete insulin. The high prevalence of T1D in developed societies may be explained by environmental changes, including lower exposure to helminths. Indeed, infection by helminths such as Schistosoma, Filaria, and Heligmosomoides polygyrus and their by-products has been reported to ameliorate or prevent the development of T1D in human and animal models. Helminths can trigger distinct immune regulatory pathways, often involving adaptive immune cells that include T helper 2 (Th2) cells and regulatory T cells (Tregs) and innate immune cells that include dendritic cells, macrophages, and invariant natural killer T cells, which may act synergistically to induce Tregs in a Toll-like receptor-dependent manner...
February 13, 2019: Parasitology Research
Jiayi Huang, Ka H Wong, Stephanie V Tay, Aida Serra, Siu Kuan Sze, James P Tam
Astragalus membranaceus root, Huang Qi in Chinese, is a popular medicinal herb traditionally used to regulate blood glucose. Herein, the identification and characterization of two families of cysteine-rich peptides (CRPs), designated α- and β-astratides, from A. membranaceus roots are reported. Proteomic analysis showed that α-astratide aM1 and β-astratide bM1 belong to two distinct CRP families. The six-cysteine-containing and proline-rich α-astratide aM1 displayed high sequence identity to Pea Albumin 1 Subunit b (PA1b), while the eight-cysteine-containing β-astratide bM1 showed sequence similarity to plant defensins...
February 13, 2019: Journal of Natural Products
Dina Myasnikova, Tatsuya Osaki, Kisaki Onishi, Tatsuto Kageyama, Binbin Zhang Molino, Junji Fukuda
Diabetes is one of the most common metabolic disorders, and is characterized by the inability to secrete/sense insulin and abnormal blood glucose concentration. Many researchers have concentrated their efforts on improving islet transplantation, in particular by fabricating bioartificial pancreatic islets in vitro. One of the critical points for the success of this research direction is the improvement of culture conditions, such as oxygen supply, in the engineering of bioartificial pancreatic islets to ensure their viability and functionality after transplantation...
February 12, 2019: Scientific Reports
Dalila Azzout-Marniche, Catherine Chaumontet, Julien Piedcoq, Nadezda Khodorova, Gilles Fromentin, Daniel Tomé, Claire Gaudichon, Patrick C Even
Background: We have reported large differences in adiposity (fat mass/body weight) gain between rats fed a low-fat, high-starch diet, leading to their classification into carbohydrate "sensitive" and "resistant" rats. In sensitive animals, fat accumulates in visceral adipose tissues, leading to the suggestion that this form of obesity could be responsible for rapid development of metabolic syndrome. Objective: We investigated whether increased amylase secretion by the pancreas and accelerated starch degradation in the intestine could be responsible for this phenotype...
February 8, 2019: Journal of Nutrition
Yunxia Zhu, Yi Sun, Yuncai Zhou, Yan Zhang, Tao Zhang, Yating Li, Weiyan You, Xiaoai Chang, Li Yuan, Xiao Han
Current research indicates that beta cell loss in type 2 diabetes may be attributed to beta cell dedifferentiation rather than apoptosis; however, the mechanisms by which this occurs remain poorly understood. Our previous study demonstrated that elevation of microRNA-24 (miR-24) in a diabetic setting caused beta cell dysfunction and replicative deficiency. In this study, we focused on the role of miR-24 in beta cell apoptosis and dedifferentiation under endoplasmic reticulum (ER) stress conditions. We found that miR-24 overabundance protected beta cells from thapsigargin (TG)-induced apoptosis at the cost of accelerating the impairment of glucose-stimulated insulin secretion (GSIS) and enhancing the presence of dedifferentiation markers...
February 12, 2019: Journal of Molecular Cell Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"