Read by QxMD icon Read

Prussian photothermal

Hao Li, Wei Zhang, Li Ding, Xing-Wang Li, Yang Wu, Jin-Hai Tang
To realize the photothermal therapy ability of Prussian blue-modified ferritin nanoparticles (PB-Ft NPs) and its synergistic effect with chemotherapy, PB-Ft NPs were synthesized by a simple surface double decomposition reaction. Mean sizes of ferritin and PB-Ft NPs were 10.4 nm and 12.6 nm, respectively. The obtained PB-Ft NPs were verified to have both the photothermal conversion ability of Prussian blue and the morphology of ferritin. The in vitro and in vivo photothermal therapy results confirm PB-Ft NPs can successfully inhibit the growth of murine breast cancer cell line (4T1) without any obvious side effect...
February 2, 2019: Journal of Biomaterials Applications
Tingting Jiang, Yuanlin Wang, Zhenglin Li, Hüsnü Aslan, Lei Sun, Ye Sun, Wei Wang, Miao Yu
Waterborne health issues continue to grow despite the large number of available solutions. Current sterilization techniques to fight with waterborne diseases struggle to meet the demands on cost, efficiency and reach. Effective alternatives are pressingly required. Here we introduce Prussian blue coated ferroferric oxide (Fe3 O4 @PB) composites for water sterilization. The composites exhibit superior photothermal inactivation of bacteria under solar-light irradiation, with nearly complete inactivation of bacterial cells in only 15 min...
January 16, 2019: Journal of Colloid and Interface Science
Yanjun Xu, Yang Zhang, Xiaojun Cai, Wei Gao, Xiuzhen Tang, Yini Chen, Jie Chen, Li Chen, Qiwei Tian, Shiping Yang, Yuanyi Zheng, Bing Hu
Background: The intrinsic properties of Prussian blue (PB) nanoparticles make them an attractive tool in nanomedicine, including magnetic resonance imaging (MRI), photoacoustic imaging (PAI), and photothermal therapy (PTT) properties. However, there still remains the challenge of their poor dispersible stability in the physiological environment. In this study, we developed an efficient hydrothermal method to address the poor dispersible stability of PB nanoparticles in the physiological environment...
2019: International Journal of Nanomedicine
Peng Xue, Ruihao Yang, Lihong Sun, Qian Li, Lei Zhang, Zhigang Xu, Yuejun Kang
Indocyanine green (ICG) is capable of inducing a photothermal effect and the production of cytotoxic reactive oxygen species for cancer therapy. However, the major challenge in applying ICG molecules for antitumor therapy is associated with their instability in aqueous conditions and rapid clearance from blood circulation, which causes insufficient bioavailability at the tumor site. Herein, we conjugated ICG molecules with Prussian blue nanoparticles enclosing a Fe3 O4 nanocore, which was facilitated by cationic polyethyleneimine via electrostatic adsorption...
2018: Nano-micro letters
Dongdong Wang, Ruohong Shi, Jiajia Zhou, Sixiang Shi, Huihui Wu, Pengping Xu, Hui Wang, Guoliang Xia, Todd E Barnhart, Weibo Cai, Zhen Guo, Qianwang Chen
Therapeutic effects of photodynamic therapy (PDT) remain largely limited because of tumor hypoxia. Herein, we report safe and versatile nanocatalysts (NCs) for endogenous oxygen generation and imaging-guided enhanced PDT. The NCs (named as PSP) are prepared by coating Prussian blue (PB) with mesoporous silica to load photosensitizer (zinc phthalocyanine, ZnPc), followed by the modification of polyethylene glycol chains. The inner PB not only acts like a catalase for hydrogen peroxide decomposition but also serves as a photothermal agent to increase the local temperature and then speed up the oxygen supply under near-infrared irradiation...
October 12, 2018: iScience
Lihong Sun, Qian Li, Mengmeng Hou, Ya Gao, Ruihao Yang, Lei Zhang, Zhigang Xu, Yuejun Kang, Peng Xue
Multiple therapeutic modalities, such as photodynamic (PDT) and photothermal (PTT) therapies, have been jointly applied to produce a synergistic effect for tumor eradication based on the hyperthermia and generation of reactive oxygen species (ROS) mediated by photoactive agents. Effective delivery of highly efficient photosensitizers and photothermal agents is the key for combination of PDT/PTT. Herein, we propose a strategy to functionalize Prussian blue (PB) nanoparticles (NPs) with Chlorin e6 (Ce6)-imbedded erythrocyte membrane vesicles...
October 24, 2018: Biomaterials Science
Lei Zhang, Lihong Sun, Mengmeng Hou, Zhigang Xu, Yuejun Kang, Peng Xue
Temperature is a critical extrinsic physical parameter that determines cell fate. Hyperthermia therapy has become an efficient treatment for tumor ablation. To understand the response of tumor cells under thermal shocks, we present a paper-based photothermal array that can be conveniently coupled with commercial 96-well cell culture plates. This paper chip device was fabricated in one step using Parafilm® and Kimwipers® based on a heat lamination strategy. Liquid was completely adsorbed and confined within the cellulose fibres of hydrophilic regions...
August 9, 2018: Biomedical Microdevices
Milan Gautam, Kishwor Poudel, Chul Soon Yong, Jong Oh Kim
This review outlines recently developed Prussian blue nanoparticle (PB NPs)-based multimodal imaging-guided chemo-photothermal strategies for cancer diagnosis and treatment in order to provide insight into the future of the field. The primary limitation of existing therapeutics is the lack of selectivity in drug delivery: they target healthy and cancerous cells alike. In this paper, we provide a thorough review of diverse synthetic and surface engineering techniques for PB NP fabrication. We have elucidated the various targeting approaches employed to deliver the therapeutic and imaging ligands into the tumor area, and outlined methods for enhancement of the tumor ablative ability of the NPS, including several important combinatorial approaches...
October 5, 2018: International Journal of Pharmaceutics
Zhiguo Qin, Yan Li, Ning Gu
Prussian blue nanoparticles (PBNPs) with favorable biocompatibility and unique properties have captured the attention of extensive biomedical researchers. A great progress is made in the application of PBNPs as therapy and diagnostics agents in biomedicine. This review begins with the recent synthetic strategies of PBNPs and the regulatory approaches for their size, shape, and uniformity. Then, according to the different properties of PBNPs, their application in biomedicine is summarized in detail. With modifiable features, PBNPs can be used as drug carriers to improve the therapeutic efficacy...
October 2018: Advanced Healthcare Materials
Ganglin Wang, Zhi Li, Xucheng Luo, Renye Yue, Yi Shen, Nan Ma
In situ monitoring of the photothermal (PT) effect at the cellular level is of great importance in the photothermal (PT) treatment of cancer. Herein, we report a class of DNA-templated gold nanoparticle (GNP)-quantum dot (QD) complexes (GQC) for PT sensing in solution and in cancer cells in vitro. Specifically, the QD photoluminescence (PL) could be activated at elevated temperature with a wide thermo-responsive range between 45 °C and 70 °C, which fits the temperature threshold for effective cancer cell ablation...
September 13, 2018: Nanoscale
Giacomo Dacarro, Angelo Taglietti, Piersandro Pallavicini
Prussian blue (PB) is a coordination polymer studied since the early 18th century, historically known as a pigment. PB can be prepared in colloidal form with a straightforward synthesis. It has a strong charge-transfer absorption centered at ~700 nm, with a large tail in the Near-IR range. Irradiation of this band results in thermal relaxation and can be exploited to generate a local hyperthermia by irradiating in the so-called bio-transparent Near-IR window. PB nanoparticles are fully biocompatible (PB has already been approved by FDA) and biodegradable, this making them ideal candidates for in vivo use...
June 11, 2018: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Bo Zhou, Bang-Ping Jiang, Wanying Sun, Fang-Mian Wei, Yun He, Hong Liang, Xing-Can Shen
Design and development of photosensitizers that can efficiently convert energy of near-infrared (NIR) laser irradiation are of major importance for cancer photoassisted therapeutics. Herein, for the first time, it is demonstrated that Prussian blue (PB), a classic coordination compound, can act as a novel photosensitizer with efficient generation of singlet oxygen and excellent photothermal conversion via NIR photoirradiation-induced energy transfer. After modification with hyaluronic acid (HA), the as-prepared HA-modified PB nanocubes (HA@PB) are highly dispersible in aqueous and physiological solutions, as well as show excellent photothermal/photodynamic activities under NIR (808 nm) photoexcitation...
May 30, 2018: ACS Applied Materials & Interfaces
Elizabeth E Sweeney, Juliana Cano-Mejia, Rohan Fernandes
A thermal "window" of immunogenic cell death (ICD) elicited by nanoparticle-based photothermal therapy (PTT) in an animal model of neuroblastoma is described. In studies using Prussian blue nanoparticles to administer photothermal therapy (PBNP-PTT) to established localized tumors in the neuroblastoma model, it is observed that PBNP-PTT conforms to the "more is better" paradigm, wherein higher doses of PBNP-PTT generates higher cell/local heating and thereby more cell death, and consequently improved animal survival...
May 2018: Small
Jun Zhou, Menghuan Li, Yanhua Hou, Zhong Luo, Qiufang Chen, Hexu Cao, Runlan Huo, Chencheng Xue, Linawati Sutrisno, Lan Hao, Yang Cao, Haitao Ran, Lu Lu, Ke Li, Kaiyong Cai
Tumor hypoxia is one of the major challenges for the treatment of tumors, as it may negatively affect the efficacy of various anticancer modalities. In this study, a tumor-targeted redox-responsive composite biocatalyst is designed and fabricated, which may combine tumor starvation therapy and low-temperature photothermal therapy for the treatment of oxygen-deprived tumors. The nanosystem was prepared by loading porous hollow Prussian Blue nanoparticles (PHPBNs) with glucose oxidase (GOx) and then coating their surface with hyaluronic acid (HA) via redox-cleavable linkage, therefore allowing the nanocarrier to bind specifically with CD44-overexpressing tumor cells while also exerting control over the cargo release profile...
March 27, 2018: ACS Nano
Lamiaa M A Ali, Emna Mathlouthi, Marilyn Kajdan, Morgane Daurat, Jérôme Long, Rahima Sidi-Boulenouar, Maïda Cardoso, Christophe Goze-Bac, Nourredine Amdouni, Yannick Guari, Joulia Larionova, Magali Gary-Bobo
Here we demonstrate for the first time that Mn2+ -doped Prussian blue nanoparticles of c.a. 70 nm act as effective agents for photothermal therapy under two-photon excitation with an almost total eradication of malignant cells (97 and 98%) at a concentration of 100 μg mL-1 24 h after NIR excitation. This effect combined with interesting longitudinal NMR relaxivity values offer new perspectives for effective imaging and cancer treatment.
June 2018: Photodiagnosis and Photodynamic Therapy
Jinrong Peng, Qian Yang, Wenting Li, Liwei Tan, Yao Xiao, Lijuan Chen, Ying Hao, Zhiyong Qian
Because of the nontargeting release of anticancer drugs, conventional chemotherapy results in serious side effects and poor therapeutic outcomes. In addition, hypoxia situation in the tumor microenvironment also promotes the growth and metastasis of tumors. Multifunctional nanocarriers with stimuli-activation and hypoxia-relieving properties can help overcome some of these limitations. In this study, we have constructed a nanocarrier which is named PBMn-DOX@RBC. A Prussian blue/manganese dioxide (PBMn) nanoparticle is used as an oxygen precursor or catalyzer for H2 O2 activation, and a red blood cell (RBC) membrane is used to increase the loading capacity of doxorubicin (DOX) and prolong the circulation time in vivo...
December 27, 2017: ACS Applied Materials & Interfaces
Samira Kargar, Samideh Khoei, Sepideh Khoee, Sakine Shirvalilou, Seied Rabi Mahdavi
Glioma is one of the most common malignant cancers of the central nervous system (CNS). Radiatherapy and chemotherapy may be used to slow the growth of tumors that cannot be removed with surgery. The current study developed a combination therapy tool using Nanographene oxide (NGO) functionalized with poly lactic-co-glycolic acid (PLGA) as a carrier of 5-iodo-2-deoxyuridine (IUdR) for glioma cancer treatment. U87MG cells were treated in different groups with IUdR, PLGA-coated Nanographene oxide (PLGA-NGO), IUdR-loaded PLGA-coated Nanographene oxide (IUdR-PLGA-NGO), 2Gy 6MV X-ray radiation, and near-infrared region (NIR) laser radiation...
March 2018: Photodiagnosis and Photodynamic Therapy
Yun Yan Su, Hui Yao, Shuang Zhao, Wei Tian, Wen Fei Liu, Shou Ju Wang, Ying Liu, Ying Tian, Xiao Dong Zhang, Zhao Gang Teng, Guang Ming Lu, Long Jiang Zhang
Herein, we demonstrate a coating-etching strategy to directly synthesize hollow Prussian blue (PB) nanocubes with well-dispersed Ag nanoparticles (denoted as Ag-HPB). The method is accomplished by introduction of PB precursors, K3 Fe(CN)6 and Fe3+ into a reaction system containing AgNO3 and ascorbic acid, in which a series reactions contain formation of Ag nanoparticles, coating of PB on the nanoparticles, and diffusion of Ag into the PB frameworks occur. The strategy for preparation of the hollow structured Ag-HPB is intrinsically simple and does not require pre-preparation of any sacrificial templates or toxic etching agents...
February 15, 2018: Journal of Colloid and Interface Science
Peng Xue, Lihong Sun, Qian Li, Lei Zhang, Zhigang Xu, Chang Ming Li, Yuejun Kang
Multifunctional nanoagents have become popular and valuable pharmaceuticals for effective cancer treatment. Moreover, there is an increasing tendency to develop therapeutic agents with excellent biocompatibility, high efficiency, specific targeting and combinatorial treatment effects. In this study, we proposed a facile technique to synthesize PEGylated (polyethylene glycol modified) magnetic Prussian blue (PB) nanoparticles with encapsulated doxorubicin (DOX), abbreviated as Fe3 O4 @PB/PEG/DOX NPs, for combined targeted photothermal ablation and pH-triggered chemotherapy of tumour cells...
January 1, 2018: Journal of Colloid and Interface Science
Shraddha S Kale, Rachel A Burga, Elizabeth E Sweeney, Zungho Zun, Raymond W Sze, Anthony Tuesca, J Anand Subramony, Rohan Fernandes
Theranostic nanoparticles offer the potential for mixing and matching disparate diagnostic and therapeutic functionalities within a single nanoparticle for the personalized treatment of diseases. In this article, we present composite iron oxide-gadolinium-containing Prussian blue nanoparticles (Fe3 O4 @GdPB) as a novel theranostic agent for T1 -weighted magnetic resonance imaging (MRI) and photothermal therapy (PTT) of tumors. These particles combine the well-described properties and safety profiles of the constituent Fe3 O4 nanoparticles and gadolinium-containing Prussian blue nanoparticles...
2017: International Journal of Nanomedicine
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"