Read by QxMD icon Read

hemolysis liposome

Wenjiao Xiao, Qiuyi Fu, Yi Zhao, Li Zhang, Qiming Yue, Li Hai, Li Guo, Yong Wu
In this study, a novel brain targeting ascorbic acid (AA) derivative with "lock-in" function was designed and synthesized as a liposome ligand to prepare novel liposomes to achieve the effective delivery of drug formulations to brain via glucose transporter 1 (GLUT1 ) and the Na+ -dependent vitamin C transporter (SVCT2 ). The liposome was prepared and characterized in terms of the particle size, zeta potential, encapsulation efficiency, release profile, stability, hemolysis and cell cytotoxicity. The preliminary evaluation in vivo demonstrated that the AA-thiamine disulfide system (TDS)-coated liposome had an improved targeting ability and significantly increased the brain concentration of docetaxel (DTX) as compared to the naked docetaxel, the non-coated and the AA-coated liposomes...
January 17, 2019: Chemistry and Physics of Lipids
Yonghong Song, Zhujun Sheng, Yunjun Xu, Liang Dong, Weiping Xu, Fangyuan Li, Jing Wang, Zeyu Wu, Yi Yang, Yang Su, Xiaolian Sun, Daishun Ling, Yang Lu
As an active natural ingredient extracted from the plant Rheum palmatum, emodin exhibits various pharmacological activities, especially the inhibition of tumor growth and migration. However, the anticancer activity of emodin is limited mainly due to its poor solubility and the lack of specific targeting. Herein, we employed liposome to load emodin into the lipid bilayer, and high-performance ferromagnetic iron oxide nanocubes were simultaneously encapsulated in the hydrophilic bilayer. The optimized magnetic liposomal emodin nanocomposite (MLE) exhibited a 24...
January 16, 2019: Biomaterials Science
Qiuyi Fu, Yi Zhao, Zhongzhen Yang, Qiming Yue, Wenjiao Xiao, Yang Chen, Yang Yang, Li Guo, Yong Wu
The treatment of glioma is a great challenge because of the existence of the blood-brain barrier (BBB). In order to develop an efficient glioma-targeting drug delivery system to greatly improve the brain permeability of anti-cancer drugs and target glioma, a novel glioma-targeted glucose-RGD (Glu-RGD) derivative was designed and synthesized as ligand for preparing liposomes to effectively deliver paclitaxel (PTX) to cross the BBB and target glioma. The liposomes were prepared and characterized for particle size, zeta potential, encapsulation efficiency, release profile, stability, hemolysis, and cell cytotoxicity...
February 2019: Archiv der Pharmazie
Alvaro Siano, Maria Veronica Humpola, Eliandre de Oliveira, Fernando Albericio, Arturo C Simonetta, Rafael Lajmanovich, Georgina G Tonarelli
Amphibians´ skin produces a diverse array of antimicrobial peptides that play a crucial role as the first line of defense against microbial invasion. Despite the immense richness of wild amphibians in Argentina, current knowledge about the presence of peptides with antimicrobial properties is limited to a only few species. Here we used LC-MS-MS to identify antimicrobial peptides with masses ranging from 1000 to 4000 Da from samples of skin secretions of Leptodactylus latrans (Anura: Leptodactylidae). Three novel amino acid sequences were selected for chemical synthesis and further studies...
November 11, 2018: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Sushant Lakkadwala, Jagdish Singh
Glioma is a highly malignant tumor that starts in the glial cells of brain. Tumor cells reproduce quickly and infiltrate rapidly in high grade glioma. Permeability of chemotherapeutic agents into brain is restricted owing to the presence of blood brain barrier (BBB). In this study, we developed a dual functionalized liposomal delivery system for efficient transport of chemotherapeutics across BBB for the treatment of glioma. Liposomes were surface modified with transferrin (Tf) for receptor targeting, and cell penetrating peptide PFVYLI (PFV) to increase translocation of doxorubicin (Dox) and Erlotinib (Erlo) across the BBB into glioblastoma (U87) tumor cells...
September 21, 2018: Colloids and Surfaces. B, Biointerfaces
Matthew R Aronson, Andrew W Simonson, Lindsey M Orchard, Manuel Llinás, Scott H Medina
Anticancer peptides (ACPs) are cationic amphiphiles that preferentially kill cancer cells through folding-dependent membrane disruption. Although ACPs represent attractive therapeutic candidates, particularly against drug-resistant cancers, their successful translation into clinical practice has gone unrealized due to their poor bioavailability, serum instability and, most importantly, severe hemolytic toxicity. Here, we exploit the membrane-specific interactions of ACPs to prepare a new class of peptide-lipid particle, we term a lipopeptisome (LP)...
September 19, 2018: Acta Biomaterialia
Alicja Karabasz, Krzysztof Szczepanowicz, Agnieszka Cierniak, Joanna Bereta, Monika Bzowska
Background: Toxicity of nanomaterials is one of the most important factors limiting their medical application. Evaluation of in vitro nanotoxicity allows for the identification and elimination of most of the toxic materials prior to animal testing. The current knowledge of the possible side effects of biodegradable nanomaterials, such as liposomes and polymeric organic nanoparticles, is limited. Previously, we developed a potential drug delivery system in the form of nanocapsules with polyelectrolyte, biodegradable shells consisting of poly-l-lysine and poly-l-glutamic acid (PGA), formed by the layer-by-layer adsorption technique...
2018: International Journal of Nanomedicine
Mei-Ping Tian, Rui-Xi Song, Ting Wang, Meng-Jie Sun, Ya Liu, Xi-Guang Chen
Liposomes (LPs), a delivery vehicle for stabilizing drugs, the characteristics of being easy to aggregate and fuse limit its application. Polymer coating is a promising way to tackle these issues. In this study, the potential of carboxymethyl chitosan (CMCS) and quaternary ammonium chitosan (TMC)-coated liposomes (CMCS/TMC-LPs) for improving the oral delivery capacity of curcumin (CUR) was explored. CMCS/TMC-LPs were prepared by electrostatic adsorption in a layer-by-layer manner. CMCS/TMC-LPs were spherical and had not obvious change in particle size and morphology after storage at 4 °C for 7 and 14 days...
December 2018: International Journal of Biological Macromolecules
Xiaozhu Tang, Jing Sun, Tao Ge, Kaiqi Zhang, Qiuyi Gui, Shantang Zhang, Weidong Chen
Gambogenic acid (GNA), which possesses diverse anti-tumor activities both in vitro and in vivo, is regarded as a potential anticancer compound. However, the excessive irritation to the blood vessel, short elimination half-life and poor aqueous solubility restricted its clinical application. In this study, Gambogenic acid-loaded PEGylated liposomes (GNA-PEG-LPs) were developed to reduce toxicity, prolong the half-life and enhance anticancer efficacy both in vitro and in vivo. The average particle size of GNA-PEG-LPs was 90...
August 16, 2018: Colloids and Surfaces. B, Biointerfaces
Cancheng Liao, Danqiao Xu, Xiaohong Liu, Yuqi Fang, Jun Yi, Xiaofang Li, Bohong Guo
Background and aim: Iridium (Ir)-based complex is a potential antitumor ingredient, but its poor physicochemical properties such as hydrophobicity and low biocompatibility hamper further application. Liposome provides a potential delivery approach for improving the poor physicochemical property and reducing the side effects of antitumor drug. In this study, we aimed at incorporating Ir ([Ir(ppy)2 (BTCP)]PF6 ) into liposomes to enhance the biocompatibility and sustained release of Ir for intravenous administration and to elucidate the mechanism in A549 cells...
2018: International Journal of Nanomedicine
Yao Peng, Yi Zhao, Yang Chen, Zhongzhen Yang, Li Zhang, Wenjiao Xiao, Jincheng Yang, Li Guo, Yong Wu
The treatment of glioma has become a great challenge because of the existence of brain barrier (BB). In order to develop an efficient brain targeting drug delivery system to greatly improve the brain permeability of anti-cancer drugs, a novel brain-targeted glucose-vitamin C (Glu-Vc) derivative was designed and synthesized as liposome ligand for preparing liposome to effectively deliver paclitaxel (PTX). The liposome was prepared and its particle size, zeta potential, encapsulation efficiency, release profile, stability, hemolysis and cytotoxicity were also characterized...
September 1, 2018: Bioorganic & Medicinal Chemistry
Richard Greil, Sigrun Greil-Ressler, Lukas Weiss, Charlotte Schönlieb, Teresa Magnes, Bianca Radl, Gordon T Bolger, Brigitta Vcelar, Peter P Sordillo
PURPOSE: This study was conducted to investigate the safety and tolerability of increasing doses of liposomal curcumin in patients with metastatic cancer. Investigations of anti-tumor activity and of the pharmacokinetics of curcumin were secondary objectives. METHODS: In this phase I, single-center, open-label study in patients with metastatic tumors, liposomal curcumin was administered as a weekly intravenous infusion for 8 weeks. Dose escalation was started at 100 mg/m2 over 8 h and the dose increased to 300 mg/m2 over 6 h...
October 2018: Cancer Chemotherapy and Pharmacology
Sushant Lakkadwala, Jagdish Singh
Drug delivery to the brain has been a major challenge due to the presence of the blood-brain barrier, which limits the uptake of most chemotherapeutics into brain. We developed a dual-functionalized liposomal delivery system, conjugating cell penetrating peptide penetratin to transferrin-liposomes (Tf-Pen-conjugated liposomes) to enhance the transport of an anticancer chemotherapeutic drug, 5-fluorouracil (5-FU), across the blood-brain barrier into the tumor cells. The in vitro cellular uptake study showed that the dual-functionalized liposomes are capable of higher cellular uptake in glioblastoma (U87) and brain endothelial (bEnd...
November 2018: Journal of Pharmaceutical Sciences
Luciana Da Silveira Cavalcante, Jason P Acker, Jelena L Holovati
BACKGROUND: Ex vivo cold storage of red blood cells (RBCs) for transfusion has long been associated with hypothermic storage lesions. It has been proposed that liposomes can be used to mitigate hemorheological elements of RBC membrane storage lesions. This study aimed to determine the appropriate liposome treatment time and assess the effects of liposome treatment on RBC's hemorheological and metabolic profiles. MATERIALS AND METHODS: Unilamellar liposomes were synthesized to contain a bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC):cholesterol (7:3 mol%)...
August 2018: Biopreservation and Biobanking
Heidi Wolfmeier, Sarah C Mansour, Leo T Liu, Daniel Pletzer, Annette Draeger, Eduard B Babiychuk, Robert E W Hancock
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA), typified by the pulse-field type USA300, is an emerging endemic pathogen that is spreading rapidly among healthy people. CA-MRSA causes skin and soft tissue infections, life-threatening necrotizing pneumonia and sepsis, and is remarkably resistant to many antibiotics. Here we show that engineered liposomes composed of naturally occurring sphingomyelin were able to sequester cytolytic toxins secreted by USA300 and prevent necrosis of human erythrocytes, peripheral blood mononuclear cells and bronchial epithelial cells...
July 2018: EBioMedicine
Fang-Yi Su, Jasmin Chen, Hye-Nam Son, Abby M Kelly, Anthony J Convertine, T Eoin West, Shawn J Skerrett, Daniel M Ratner, Patrick S Stayton
Pulmonary intracellular infections, such as tuberculosis, anthrax, and tularemia, have remained a significant challenge to conventional antibiotic therapy. Ineffective antibiotic treatment of these infections can lead not only to undesired side effects, but also to the emergence of antibiotic resistance. Aminoglycosides (e.g., streptomycin) have long been part of the therapeutic regiment for many pulmonary intracellular infections. Their bioavailability for intracellular bacterial pools, however, is limited by poor membrane permeability and rapid elimination...
June 25, 2018: Biomaterials Science
Muhammad Ismail, Longbing Ling, Yawei Du, Chen Yao, Xinsong Li
Artemisinin and its derivatives are highly effective drugs in the treatment of P. falciparum malaria. However, their clinical applications face challenges because of short half-life, poor bioavailability and growing drug resistance. In this article, novel dimeric artesunate phospholipid (Di-ART-GPC) based liposomes were developed by combination of dimerization and self-assembly to address these shortcomings. Firstly, Di-ART-GPC conjugate was synthesized by a facile esterification of artesunate (ART) and glycerophosphorylcholine (GPC) and confirmed by MS, 1 H NMR and 13 C NMR...
May 2018: Biomaterials
Eskandar Moghimipour, Mohsen Rezaei, Zahra Ramezani, Maryam Kouchak, Mohsen Amini, Kambiz Ahmadi Angali, Farid Abedin Dorkoosh, Somayeh Handali
The aim of this study was to develop a liposomal formulation to selectively target cancer cells. Liposomes were prepared using thin layer method and folic acid (FA) was applied for targeted delivery of 5FU to cancer cells. Liposomes prepared were characterized for encapsulation efficiency (EE%), morphology and their particle size. Cellular uptake, cytotoxicity study and ROS production were evaluated using CT26 cell line. Hemolysis test was performed on rat red blood cells (RBCs). Moreover, the efficacy of targeted liposomes were investigated by in vivo antitumor activity and tissue toxicities were studied by histological examination...
March 1, 2018: European Journal of Pharmaceutical Sciences
Petra Kaufmann-Kolle, Eduard A M Fleer, Jochem Kötting, Christine Behnert, Clemens Unger, Hansjorg Eibl
We describe the preparation of small unilamellar and multilamellar vesicles from hexadecylphosphocholine, cholesterol and 1,2-dipalmitoyl-sn-glycero-phosphoglycerol in the molar ratio 4/5/1. Particle size and chemical stability of two types of liposomes, small unilamellar vesicles and lyophilized, freshly resuspended multilamellar vesicles were proved to be stable for at least 12 months. Compared to hexadecylphosphocholine in free form, liposomal hexadecylphosphocholine showed remarkably reduced hemolysis which did not change during storage...
1994: Journal of Liposome Research
Rongji Sum, Muthukaruppan Swaminathan, Sahil Kumar Rastogi, Obdulio Piloto, Ian Cheong
For more than a century, blood agar plates have been the only test for beta-hemolysis. Although blood agar cultures are highly predictive for bacterial pathogens, they are too slow to yield actionable information. Here, we show that beta-hemolytic pathogens are able to lyse and release fluorophores encapsulated in sterically stabilized liposomes whereas alpha and gamma-hemolytic bacteria have no effect. By analyzing fluorescence kinetics, beta-hemolytic colonies cultured on agar could be distinguished in real time with 100% accuracy within 6 h...
October 27, 2017: ACS Sensors
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"