Read by QxMD icon Read

Sugar transportation

Jacob Farenholtz, Nadine Artelt, Antje Blumenthal, Karlhans Endlich, Heyo K Kroemer, Nicole Endlich, Oliver von Bohlen Und Halbach
The solute carrier (SLC) group of membrane transport proteins includes about 400 members organized into more than 50 families. The SLC family that comprises nucleoside-sugar transporters is referred to as SLC35. One of the members of this family is SLC35F1. The function of SLC35F1 is still unknown; however, recent studies demonstrated that SLC35F1 mRNA is highly expressed in the brain and in the kidney. Therefore, we examine the distribution of Slc35f1 protein in the murine forebrain using immunohistochemistry...
March 13, 2019: Cell and Tissue Research
Xiaowei Ding, Kaihui Liu, Yuxin Lu, Guoli Gong
Halophilic fungi in hypersaline habitats require multiple cellular responses for high-salinity adaptation. However, the exact mechanisms behind these adaptation processes remain to be slightly known. The current study is aimed at elucidating the morphological, transcriptomic, and metabolomic changes of the halophilic fungus Aspergillus montevidensis ZYD4 under hypersaline conditions. Under these conditions, the fungus promoted conidia formation and suppressed cleistothecium development. Furthermore, the fungus differentially expressed genes (P < 0...
March 11, 2019: Applied Microbiology and Biotechnology
Liam Curry, Hani Almukhtar, Jala Alahmed, Richard Roberts, Paul A Smith
Plasma membrane ion channels and mitochondrial electron transport complexes (mETC) are recognised "off-targets" for certain drugs. Simvastatin is one such drug, a lipophilic statin used to treat hypercholesterolaemia, but which is also associated with adverse effects like myopathy and increased risk of glucose intolerance. Such myopathy is thought to arise through adverse actions of simvastatin on skeletal muscle mETC and mitochondrial respiration. In this study we investigated whether the glucose intolerance associated with simvastatin is also mediated via adverse effects on mETC in pancreatic beta-cells since mitochondrial respiration underlies insulin secretion from these cells, an effect in part mediated by promotion of Ca2+ influx via opening of voltage-gated Ca2+ channels (VGCCs)...
March 11, 2019: Toxicological Sciences: An Official Journal of the Society of Toxicology
Jing Shen, Jun Chen, Peter Ruhdal Jensen, Christian Solem
BACKGROUND: Delactosed whey permeate (DWP) is a side stream of whey processing, which often is discarded as waste, despite of its high residual content of lactose, typically 10-20%. Microbial fermentation is one of the most promising approaches for valorizing nutrient rich industrial waste streams, including those generated by the dairies. Here we present a novel microbial platform specifically designed to generate useful compounds from dairy waste. As a starting point we use Corynebacterium glutamicum, an important workhorse used for production of amino acids and other important compounds, which we have rewired and complemented with genes needed for lactose utilization...
March 11, 2019: Microbial Cell Factories
Valéria Quintana Cavicchioli, Svetoslav Dimitrov Todorov, Ilia Iliev, Iskra Ivanova, Djamel Drider, Luís Augusto Nero
The bacteriocinogenic Enterococcus hirae ST57ACC recently isolated from a Brazilian artisanal cheese was subjected here to additional analyses in order to evaluate its bacteriocin production and the potential influence of ABC transporter system in its expression. Besides these physiological and molecular aspects, the bacteriocin was evaluated for its cytotoxicity against HT-29. Differences in the inoculum size had no impact on the growth of E. hirae ST57ACC; however, the bacteriocin was only produced after 9 h of growth when the strain was inoculated at 5% or 10% (v/v), with similar levels of bacteriocin production obtained by both conventional growth and batch fermentation...
March 9, 2019: Brazilian Journal of Microbiology: [publication of the Brazilian Society for Microbiology]
Luis D Garbinski, Barry P Rosen, Jian Chen
Arsenic is a non-essential, environmentally ubiquitous toxic metalloid. In response to this pervasive environmental challenge, organisms evolved mechanisms to confer resistance to arsenicals. Inorganic pentavalent arsenate is taken into most cells adventitiously by phosphate uptake systems. Similarly, inorganic trivalent arsenite is taken into most cells adventitiously, primarily via aquaglyceroporins or sugar permeases. The most common strategy for tolerance to both inorganic and organic arsenicals is by efflux that extrude them from the cytosol...
March 7, 2019: Environment International
Stevie Norcross, Ashwin Sunderraj, Mathew Tantama
Bacterial ATP-binding cassette transporters are a superfamily of transport systems involved in the import of various molecules including amino acids, ions, sugars, and peptides. In the lactic acid bacteria Lactococcus lactis , the oligopeptide-binding protein A (OppA) binds peptides for import to support nitrogen metabolism and cell growth. The OppA protein is of great interest because it can bind peptides over a broad variety of lengths and sequences; however, current methods to study peptide binding have employed low throughput, endpoint, or low dynamic range techniques...
February 28, 2019: ACS Omega
David S Milner, Victoria Attah, Emily Cook, Finlay Maguire, Fiona R Savory, Mark Morrison, Carolin A Müller, Peter G Foster, Nicholas J Talbot, Guy Leonard, Thomas A Richards
Many microbes acquire metabolites in a "feeding" process where complex polymers are broken down in the environment to their subunits. The subsequent uptake of soluble metabolites by a cell, sometimes called osmotrophy, is facilitated by transporter proteins. As such, the diversification of osmotrophic microorganisms is closely tied to the diversification of transporter functions. Horizontal gene transfer (HGT) has been suggested to produce genetic variation that can lead to adaptation, allowing lineages to acquire traits and expand niche ranges...
March 6, 2019: Proceedings of the National Academy of Sciences of the United States of America
Mélodie Sawicki, Marine Rondeau, Barbara Courteaux, Fanja Rabenoelina, Gea Guerriero, Eric Gomès, Ludivine Soubigou-Taconnat, Sandrine Balzergue, Christophe Clément, Essaïd Ait Barka, Nathalie Vaillant-Gaveau, Cédric Jacquard
Low temperature is a critical environmental factor limiting plant productivity, especially in northern vineyards. To clarify the impact of this stress on grapevine flower, we used the Vitis array based on Roche-NimbleGen technology to investigate the gene expression of flowers submitted to a cold night. Our objectives were to identify modifications in the transcript levels after stress and during recovery. Consequently, our results confirmed some mechanisms known in grapes or other plants in response to cold stress, notably, (1) the pivotal role of calcium/calmodulin-mediated signaling; (2) the over-expression of sugar transporters and some genes involved in plant defense (especially in carbon metabolism), and (3) the down-regulation of genes encoding galactinol synthase (GOLS), pectate lyases, or polygalacturonases...
March 5, 2019: International Journal of Molecular Sciences
Suman Bhattacharya, Uttam Maji, Gausal A Khan, Rahul Das, Asru K Sinha, Chandradipa Ghosh, Smarajit Maiti
INTRODUCTION: Garlic has been reported to stimulate nitric-oxide (NO) synthesis in various cells. The role of aqueous-extract of garlic (AEG) and a purified NO-generating protein from garlic (NGPG) was investigated to control hyperglycemia by hepatic insulin synthesis through NGPG induced synthesis of NO via glucose-activated NO-synthase and glucose transporter-4 (Glut-4) in the hepatocytes. METHODS: Type-1-diabetic mellitus mice were prepared by alloxan treatment, NO was determined by methemoglobin method, insulin synthesis was quantitated by ELISA...
March 2019: Biomedicine & Pharmacotherapy
Firdaus Samsudin, Syma Khalid
The outer membrane channel OprD from Pseudomonas aeruginosa transports basic amino acids and clinically relevant carbapenem antibiotics. Understanding the molecular basis of substrate permeation across this channel will therefore lead to better therapeutic designs to treat infections. Using umbrella sampling simulations, we calculated the potential of mean force (PMF) for the arginine permeation pathway through OprD. The PMF reveals a deep free energy well of ~6 kT around the putative substrate binding site followed by a shallower well of ~4 kT close to the most constricted region of the pore...
March 6, 2019: Journal of Physical Chemistry. B
Fang Yan, Wei Deng, Xiaoqin Pang, Yushuo Gao, Helen Chan, Qiang Zhang, Nan Hu, Jingxuan Chen, Zhengguo Li
The knotted1-like homeobox genes not only regulate the formation and differentiation of meristems and vascular system but are also involved in biosynthesis and signal transduction of diverse plant hormones in tomato. Here, we showed that a knotted1-like homeobox gene Tkn4 is required for pollen and pollen tube growth when this gene is overexpressed in tomato. Pollen grains in the Tkn4 overexpressed plants (Tkn4-OX) germinated quicker than those in the wild-type (WT) plant cultured in vitro in germination media...
April 2019: Plant Science: An International Journal of Experimental Plant Biology
Csaba Éva, Mária Oszvald, László Tamás
One of the most important tasks laying ahead today's biotechnology is to improve crop productivity with the aim of meeting increased food and energy demands of humankind. Plant productivity depends on many genetic factors, including life cycle, harvest index, stress tolerance and photosynthetic activity. Many approaches were already tested or suggested to improve either. Limitations of photosynthesis have also been uncovered and efforts been taken to increase its efficiency. Examples include decreasing photosynthetic antennae size, increasing the photosynthetically available light spectrum, countering oxygenase activity of Rubisco by implementing C4 photosynthesis to C3 plants and altering source to sink transport of metabolites...
March 2019: Plant Science: An International Journal of Experimental Plant Biology
Sakonwan Kuhaudomlarp, Giulia Pergolizzi, Nicola J Patron, Bernard Henrissat, Robert A Field
Glycoside phosphorylases (GPs) catalyze the phosphorolysis of glycans into the corresponding sugar 1-phosphates and shortened glycan chains. Given the diversity of natural β-(1→3)-glucans and their wide range of biotechnological applications, the identification of enzymatic tools that can act on β-(1→3)-glucooligosaccharides is an attractive area of research. GP activities acting on β-(1→3)-glucooligosaccharides have been described in bacteria, the photosynthetic excavate Euglena gracilis , and the heterokont Ochromonas spp...
February 28, 2019: Journal of Biological Chemistry
Citao Liu, Michael R Schläppi, Bigang Mao, Wei Wang, Aiju Wang, Chengcai Chu
Cold temperature during the reproductive stage often causes great yield loss of grain crops in subtropical and temperate regions. Previously we showed that the rice transcription factor bZIP73Jap plays an important role in cold adaptation at the seedling stage. Here we further demonstrate that bZIP73Jap also confers cold stress tolerance at the reproductive stage. bZIP73Jap was up-regulated under cold treatment and predominately expressed in panicles at the early binucleate and flowering stages. bZIP73Jap forms heterodimers with bZIP71, and co-expression of bZIP73Jap and bZIP71 transgenic lines significantly increased seed-setting rate and grain yield under natural cold stress conditions...
February 27, 2019: Plant Biotechnology Journal
Ramiro Meza-Palacios, Alberto A Aguilar-Lasserre, Luis F Morales-Mendoza, Jorge R Pérez-Gallardo, José O Rico-Contreras, Alejandro Avarado-Lassman
The cane sugar industry in Mexico depends heavily on the supply of energy, fossil fuels and material resources for its proper operation. The overuse of these resources plus the technical and technological deficiency causes severe environmental consequences. This scientific work aims to analyze the environmental damage attributable to cane sugar production following the life cycle assessment (LCA) methodology. System boundaries include sugarcane growing and harvesting, sugarcane transportation, sugar milling and electricity cogeneration from bagasse...
February 27, 2019: Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering
Dmitry Shvarev, Carolina N Nishi, Iris Maldener
The nitrogenase complex in the heterocysts of the filamentous freshwater cyanobacterium Anabaenasp. PCC 7120 fixes atmospheric nitrogen to allow diazotrophic growth. The heterocyst cell envelope protects the nitrogenase from oxygen and consists of a polysaccharide and a glycolipid layer that are formed by a complex process involving the recruitment of different proteins. Here, we studied the function of the putative nucleoside-diphosphate-sugar epimerase HgdA, which along with HgdB and HgdC is essential for deposition of the glycolipid layer and growth without a combined nitrogen source...
February 25, 2019: MicrobiologyOpen
Ofer Stein, David Granot
Sucrose is the end product of photosynthesis and the primary sugar transported in the phloem of most plants. Sucrose synthase (SuSy) is a glycosyl transferase enzyme that plays a key role in sugar metabolism, primarily in sink tissues. SuSy catalyzes the reversible cleavage of sucrose into fructose and either uridine diphosphate glucose (UDP-G) or adenosine diphosphate glucose (ADP-G). The products of sucrose cleavage by SuSy are available for many metabolic pathways, such as energy production, primary-metabolite production, and the synthesis of complex carbohydrates...
2019: Frontiers in Plant Science
Shangfu Li, Dan Gao, Yuyang Jiang
Acylcarnitines play an essential role in regulating the balance of intracellular sugar and lipid metabolism. They serve as carriers to transport activated long-chain fatty acids into mitochondria for β-oxidation as a major source of energy for cell activities. The liver is the most important organ for endogenous carnitine synthesis and metabolism. Hepatocellular carcinoma (HCC), a primary malignancy of the live with poor prognosis, may strongly influence the level of acylcarnitines. In this paper, the function, detection and alteration of acylcarnitine metabolism in HCC were briefly reviewed...
February 21, 2019: Metabolites
Hélène S Robert
Seed development in flowering plants is a critical part of plant life for successful reproduction. The formation of viable seeds requires the synchronous growth and development of the fruit and the three seed structures: the embryo, the endosperm, the seed coat. Molecular communication between these tissues is crucial to coordinate these developmental processes. The phytohormone auxin is a significant player in embryo, seed and fruit development. Its regulated local biosynthesis and its cell-to-cell transport capacity make of auxin the perfect candidate as a signaling molecule to coordinate the growth and development of the embryo, endosperm, seed and fruit...
February 21, 2019: International Journal of Molecular Sciences
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"