Read by QxMD icon Read

Epoxy Novolac

Pornnapa Kasemsiri, Narubeth Lorwanishpaisarn, Uraiwan Pongsa, Shinji Ando
Conventional shape memory polymers (SMPs) can memorize their permanent shapes. However, these SMPs cannot reconfigure their original shape to obtain a desirable geometry owing to permanent chemically or physically crosslinked networks. To overcome this limitation, novel SMPs that can be reconfigured via bond exchange reactions (BERs) have been developed. In this study, polymer composites consisting of epoxy phenolic novolac (EPN) and bio-based cashew nut shell liquid (CNSL) reinforced by multi-walled carbon nanotubes (CNTs) were prepared...
April 28, 2018: Polymers
Matthias Pursch, Antje Wegener, Stephan Buckenmaier
A new methodology is presented for two-dimensional liquid chromatography (2D-LC) separations of polymers. Active solvent modulation (ASM) was evaluated in its effectiveness to enhance solvent compatibility for both separation dimensions. As an example the determination of target compounds in epoxy resins was used. Ultra-high pressure size-exclusion chromatography was applied in the first dimension using THF as the solvent. The second dimension separation was operated in reversed-phase mode using an acetonitrile/water gradient...
August 10, 2018: Journal of Chromatography. A
Xian-Peng Zhang, Jian Luo, Tong-Fang Jing, Da-Xia Zhang, Bei-Xing Li, Feng Liu
Microcapsules (MCs) prepared with diverse wall material structures may exhibit different properties. In this study, MCs were fabricated with three kinds of epoxy phenolic novolac resins (EPNs), which possessed unique epoxy values as wall-forming materials by interfacial polymerization. The effects of the EPN types on the surface morphology, particle size distribution, encapsulation efficiency, thermal stability as well as release behavior and bioactivity of the MCs were investigated. In all three samples, the MCs had nearly spherical shapes with fine monodispersities and sizes in the range of 7-30 μm...
May 1, 2018: Colloids and Surfaces. B, Biointerfaces
Natalia Szczepańska, Błażej Kudłak, Jacek Namieśnik
There is no doubt that the subject area of plastic materials (e.g., production of epoxy resins or polyesters) is inherently connected to issues concerning bisphenol A (BPA) and its analogues. Unfortunately, much less attention has been given to other compounds, which are also used for the production of these materials. Bisphenol A diglycidyl ether (BADGE) is a synthetic industrial compound obtained by a condensation reaction between epichlorohydrin (ECH) and BPA. Similarly, novolac glycidyl ether (BFDGE) is produced in the reaction between novolac and epichlorohydrin...
January 1, 2018: Science of the Total Environment
Kavita Srivastava, Ashwani Kumar Rathore, Deepak Srivastava
Cashew nut shell liquid (CNSL), an agricultural renewable resource material, produces natural phenolic distillates such as cardanol. Cardanol condenses with formaldehyde at the ortho- and para-position of the phenolic ring under acidic or alkaline condition to yield a series of polymers of novolac- or resol-type phenolic resins. These phenolic resins may further be modified by epoxidation with epichlorohydrin to duplicate the performance of such phenolic-type novolacs (CFN). The structural changes during curing of blend samples of epoxy and carboxyl terminated poly (butadiene-co-acrylonitrile) (CTBN) were studies by Fourier-transform infrared (FTIR) spectrophotometer...
January 5, 2018: Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy
Kirsten A Ganaja, Cory A Chaplan, Jingyi Zhang, Nathaniel W Martinez, Andres W Martinez
Paper microzone plates in combination with a noncontact liquid handling robot were demonstrated as tools for studying the stability of enzymes stored on paper. The effect of trehalose and SU-8 epoxy novolac resin (SU-8) on the stability of horseradish peroxidase (HRP) was studied in both a short-term experiment, where the activity of various concentrations of HRP dried on paper were measured after 1 h, and a long-term experiment, where the activity of a single concentration of HRP dried and stored on paper was monitored for 61 days...
May 4, 2017: Analytical Chemistry
Wei Zhu, Chunze Yan, Yunsong Shi, Shifeng Wen, Jie Liu, Qingsong Wei, Yusheng Shi
A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm...
September 21, 2016: Scientific Reports
Jingchuan Xue, Yanjian Wan, Kurunthachalam Kannan
Bisphenols, bisphenol A diglycidyl ethers (BADGEs), and novolac glycidyl ethers (NOGEs) are used in the production of epoxy resins and polycarbonate plastics. Despite the widespread application of these chemicals in household products, studies on their occurrence in indoor air are limited. In this study, 83 indoor air samples were collected in 2014 from various locations in Albany, New York, USA, to determine the concentrations of bisphenols, BADGEs (refer to BADGE and its derivatives), and NOGEs (refer to NOGE and its derivatives) and to calculate inhalation exposure to these compounds...
May 2016: Chemosphere
Jingchuan Xue, Kurunthachalam Kannan
Bisphenol A diglycidyl ether (BADGE)- and bisphenol F diglycidyl ether (BFDGE)-based epoxy resins have a broad range of applications, including serving as inner coatings of food and beverage cans and as protective coatings in marine construction. Prior to this study, no studies had examined the occurrence and bioaccumulation of BADGEs or BFDGEs in aquatic organisms. In this study, BADGE, BFDGE, and nine of their derivatives were determined in 121 tissue (liver, kidney, blubber, and brain) samples from eight species of marine mammals collected from the U...
February 16, 2016: Environmental Science & Technology
Jingchuan Xue, Arjun K Venkatesan, Qian Wu, Rolf U Halden, Kurunthachalam Kannan
Epoxy resins incorporating bisphenol A diglycidyl ether (BADGE) and novolac glycidyl ether (NOGE) are used in a wide range of applications, including adhesives, structural and electrical laminates. However, little is known about the occurrence of BADGE, NOGE, and their derivatives in the environment. Using liquid chromatography-tandem mass spectrometry, BADGE, bisphenol F glycidyl ether (BFDGE), 3-ring NOGE, and eight of their derivatives (BADGE·2 H2O, BADGE·H2O, BADGE·HCl·H2O, BADGE·2 HCl, BADGE·HCl, BFDGE·2 H2O, and BFDGE·2 HCl) were determined in archived biosolid samples collected from 68 wastewater treatment plants (WWTPs) from the northeastern, midwestern, western, and southern regions of the USA...
June 2, 2015: Environmental Science & Technology
Shaorui Yang, Jianmin Qu
Using a previously developed coarse-grained model, we conducted large-scale (∼ 85 × 85 × 85 nm(3)) molecular dynamics simulations of uniaxial-strain deformation to study the tensile behavior of an epoxy molding compound, epoxy phenol novolacs (EPN) bisphenol A (BPA). Under the uniaxial-strain deformation, the material is found to exhibit cavity nucleation and growth, followed by stretching of the ligaments separated by the cavities, until the ultimate failure through ligament scissions. The nucleation sites of cavities are rather random and the subsequent cavity growth accounts for much (87%) of the volumetric change during the uniaxial-strain deformation...
July 2014: Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
Shaorui Yang, Zhiwei Cui, Jianmin Qu
We present a coarse-grained model for molecular dynamics simulations of an epoxy system composed of epoxy phenol novolac as epoxy monomer and bisphenol-A as the cross-linking agent. The epoxy and hardener molecules are represented as short chains of connected beads, and cross-linking is accomplished by introducing bonds between reactive beads. The interbead potential, composed of Lennard-Jones, bond stretching, and angle bending terms, is parametrized through an optimization process based on a particle swarm optimization method to fit certain key thermomechanical properties of the material obtained from experiments and previous full atomistic simulations...
February 13, 2014: Journal of Physical Chemistry. B
Shahid Saeed Qureshi, Zhiqiang Zheng, Muhammad Ilyas Sarwar, Olivier Félix, Gero Decher
Layer-by-Layer (LbL) assembled films offer many interesting applications (e.g., in the field of nanoplasmonics), but are often mechanically feeble. The preparation of nanoprotective films of an oligomeric novolac epoxy resin with poly(ethyleneimine) using covalent LbL-assembly is described. The film growth is linear, and the thickness increment per layer pair is easily controlled by varying the polymer concentration and/or the adsorption times. The abrasion resistance of such cross-linked films was tested using a conventional rubbing machine and found to be greatly enhanced in comparison to that of classic LbL-films that are mostly assembled through electrostatic interactions...
October 22, 2013: ACS Nano
Jian Sun, Xiaodong Wang, Dezhen Wu
A novel halogen-free fire resistant epoxy resin with pendent spiro-cyclotriphosphazene groups was designed and synthesized via a three-step synthetic pathway. The chemical structures and compositions of spiro-cyclotriphosphazene precursors and final product were confirmed by (1)H, (13)C, and (31)P NMR spectroscopy, mass spectroscopy, elemental analysis, and Fourier transform infrared spectroscopy. The thermal curing behaviors of the synthesized epoxy resin with 4,4'-diamino-diphenylmethane, 4,4'-diamino-diphenyl sulfone, and novolac as hardeners were investigated by differential scanning calorimetry (DSC), and the curing kinetics were also studied under a nonisothermal condition...
August 2012: ACS Applied Materials & Interfaces
Minakshi Sultania, J S P Rai, Deepak Srivastava
Concept of five-levels-four-factors central composite rotatable design was utilized for the optimization of reaction conditions of cardanol-based vinyl ester resin production, by employing response surfaces methodology, to establish a relationship between the process variables and the extent of conversion under a wide range of operating conditions which resulted in different extent of conversions. The maximum extent of conversion of cardanol-based epoxidised novolac resin (CNE) and methacrylic acid (MA) catalyzed by triphenylphosphine was found to be 95% at optimum set of conditions of molar ratio (1:0...
January 30, 2011: Journal of Hazardous Materials
Hong Zhang, Ming Xue, Yanyan Zou, Zhiyuan Dai, Kunhui Lin
An improved analytical method enabling rapid and accurate determination and identification of bisphenol F diglycidyl ether (novolac glycidyl ether 2-ring), novolac glycidyl ether 3-ring, novolac glycidyl ether 4-ring, novolac glycidyl ether 5-ring, novolac glycidyl ether 6-ring, bisphenol A diglycidyl ether, bisphenol A (2,3-dihydroxypropyl) glycidyl ether, bisphenol A (3-chloro-2-hydroxypropyl) glycidyl ether, bisphenol A bis(3-chloro-2-hydroxypropyl) ether, and bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) ether in canned food and their contact packaging materials has been developed by using, for the first time, ultra-performance liquid chromatography coupled with tandem mass spectrometry...
December 2010: Analytical and Bioanalytical Chemistry
Gabriela Blagoi, Stephan Keller, Fredrik Persson, Anja Boisen, Mogens Havsteen Jakobsen
Bioactive protein patterns and microarrays achieved by selective localization of biomolecules find various applications in biosensors, bio-microelectromechanical systems (bio-MEMS), and in basic protein studies. In this paper we describe simple photochemical methods to fabricate two-dimensional patterns on a Novolac A derivative polymer (SU-8) and, subsequently, their functionalization with biomolecules. Anthraquinone (AQ) derivatives are used to chemically modify and pattern SU-8 surfaces. Features as small as 20 mum are obtained when using uncollimated light...
September 16, 2008: Langmuir: the ACS Journal of Surfaces and Colloids
Chanchira Jubsilp, Tsutomu Takeichi, Salim Hiziroglu, Sarawut Rimdusit
Wood-substituted composites from matrices based on ternary mixtures of benzoxazine, epoxy, and phenolic novolac resins (BEP resins) using woodflour (Hevea brasiliensis) as filler are developed. The results reveal that the addition of epoxy resin into benzoxazine resin can lower the liquefying temperature of the ternary systems whereas rheological characterization of the gel points indicates an evident delay of the vitrification time as epoxy content increased. The gelation of the ternary mixtures shows an Arrhenius-typed behavior and the gel time can be well predicted by an Arrhenius equation with activation energy of 35-40kJ/mol...
December 2008: Bioresource Technology
Gabriel Cavalli, Shahanara Banu, Rohan T Ranasinghe, Graham R Broder, Hugo F P Martins, Cameron Neylon, Hywel Morgan, Mark Bradley, Peter L Roach
SU-8 is an epoxy-novolac resin and a well-established negative photoresist for microfabrication and microengineering. The photopolymerized resist is an extremely highly crosslinked polymer showing outstanding chemical and physical robustness with residual surface epoxy groups amenable for chemical functionalization. In this paper we describe, for the first time, the preparation and surface modification of SU-8 particles shaped as microbars, the attachment of appropriate linkers, and the successful application of these particles to multistep solid-phase synthesis leading to oligonucleotides and peptides attached in an unambiguous manner to the support surface...
May 2007: Journal of Combinatorial Chemistry
Liang Li, Yin Chen, Shanjun Li
In this work, novolac resin with perfluorinated side chains was synthesized and cured with o-Cresol novolac epoxy resin to obtain epoxy resins with various fluorine contents. Attenuated total reflection Fourier transform infrared spectroscopy (ATR/FT-IR) was used to monitor the in situ water diffusion process in these systems. The diffusion coefficient of water first increased and then slightly decreased with increasing fluorine content, which could be attributed to two opposite effects induced by perfluorinated side chains: enhanced hydrophobicity and increased free volume...
April 2006: Applied Spectroscopy
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"