Jie Jiang, Qiong Yang, Yi Zhang, Xiao-Yu Li, Pao-Wen Shao, Ying-Hui Hsieh, Heng-Jui Liu, Qiang-Xiang Peng, Gao-Kuo Zhong, Xiao-Qing Pan, Ying-Hao Chu, Yi-Chun Zhou
Self-assembled heteroepitaxial nanostructures have played an important role for miniaturization of electronic devices, e.g., the ultrahigh density ferroelectric memories, and cause for great concern. Our first principle calculations predict that the materials with low formation energy of the interface ( Ef ) tend to form matrix structure in self-assembled heteroepitaxial nanostructures, whereas those with high Ef form nanopillars. Under the guidance of the theoretical modeling, perovskite BiFeO3 (BFO) nanopillars are swimmingly grown into CeO2 matrix on single-crystal (001)-SrTiO3 (STO) substrates by pulsed laser deposition, where CeO2 has a lower formation energy of the interface ( Ef ) than BFO...
November 20, 2018: ACS Applied Materials & Interfaces