Read by QxMD icon Read


Alexander Rzhevskii
Raman microspectroscopy is now well established as one of the most powerful analytical techniques for a diverse range of applications in physical (material) and biological sciences. Consequently, the technique provides exceptional analytical opportunities to the science and technology of biosensing due to its capability to analyze both parts of a biosensor system-biologically sensitive components, and a variety of materials and systems used in physicochemical transducers. Recent technological developments in Raman spectral imaging have brought additional possibilities in two- and three-dimensional (2D and 3D) characterization of the biosensor's constituents and their changes on a submicrometer scale in a label-free, real-time nondestructive method of detection...
February 12, 2019: Biosensors
Christine Schulte-Osseili, Moritz Kleinert, Norbert Keil, Ruben R Rosencrantz
We fabricated a simple sensor system for qualitative analysis of glycan-mediated interactions. Our main aim was to establish a ronbbust system that allowes drop-tests without complex fluidics. The test system should be usable in routine analytics in the future and bear sufficient sensitivity to detect binding events in the nanomolar range. For this, we employed optical ring resonators and coated them with high avidity glycopolymers based on N -acetylglucosamine (GlcNAc). These hydrophilic polymers are also very feasible in preventing unspecific protein adsorption...
February 12, 2019: Biosensors
Jeniffer Carrillo, Cristhian Durán
The aim of this study was to develop and implement a methodology composed by a Static Head-Space-Sampler (SHS) coupled to a Sensory Perception System (SPS) for the extraction of Volatile Organic Compounds (VOC's) emitted by bacterial species in the water. The SPS was performed by means of a chamber of 16 Metal-Oxide-Semiconductor (MOS) gas sensors and a software with pattern recognition methods for the detection and identification of bacteria. At first, the tests were conducted from the sterile and polluted water with the Escherichia coli bacteria and modifying the incubation temperatures (50 °C, 70 °C and 90 °C), with the objective to obtain an optimal temperature for the distinguishing of species...
February 8, 2019: Biosensors
Adrian Butterworth, Elizabeth Blues, Paul Williamson, Milovan Cardona, Louise Gray, Damion K Corrigan
Antibiotic resistance is a growing concern in the treatment of infectious disease worldwide. Point-of-care (PoC) assays which rapidly identify antibiotic resistance in a sample will allow for immediate targeted therapy which improves patient outcomes and helps maintain the effectiveness of current antibiotic stockpiles. Electrochemical assays offer many benefits, but translation from a benchtop measurement system to low-cost portable electrodes can be challenging. Using electrochemical and physical techniques, this study examines how different electrode surfaces and bio-recognition elements, i...
February 7, 2019: Biosensors
Eduardo C Reynoso, Eduardo Torres, Francesca Bettazzi, Ilaria Palchetti
Pesticides, due to their intensive use and their peculiar chemical features, can persist in the environment and enter the trophic chain, thus representing an environmental risk for the ecosystems and human health. Although there are several robust and reliable standard analytical techniques for their monitoring, the high frequency of contamination caused by pesticides requires methods for massive monitoring campaigns that are capable of rapidly detecting these compounds in many samples of different origin. Immunosensors represent a potential tool for simple, rapid, and sensitive monitoring of pesticides...
February 4, 2019: Biosensors
Zaidon T Al-Aqbi, Yiing C Yap, Feng Li, Michael C Breadmore
On-site therapeutic drug monitoring (TDM) is important for providing a quick and accurate dosing to patients in order to improve efficacy and minimize toxicity. Aminoglycosides such as amikacin, gentamicin, and tobramycin are important antibiotics that have been commonly used to treat infections of chronic bacterial infections in the urinary tract, lung, and heart. However, these aminoglycosides can lead to vestibular and auditory dysfunction. Therefore, TDM of aminoglycosides is important due to their ototoxicity and nephrotoxicity...
January 30, 2019: Biosensors
Tony Sumaryada, Muhammad Sandy Gunawan, Salahuddin Perdana, Sugianto Arjo, Akhiruddin Maddu
In this paper, we report the molecular docking study of graphene oxide and glucose oxidase (GOx) enzyme for a potential glucose biosensing application. The large surface area and good electrical properties have made graphene oxide as one of the best candidates for an enzyme immobilizer and transducer in the biosensing system. Our molecular docking results revealed that graphene oxide plays a role as a GOx enzyme immobilizer in the glucose biosensor system since it can spontaneously bind with GOx at specific regions separated from the active sites of glucose and not interfering or blocking the glucose sensing by GOx in an enzyme-assisted biosensor system...
January 28, 2019: Biosensors
Christian Steinberg, François Philippon, Marina Sanchez, Pascal Fortier-Poisson, Gilles O'Hara, Franck Molin, Jean-François Sarrazin, Isabelle Nault, Louis Blier, Karine Roy, Benoit Plourde, Jean Champagne
Diagnosis of arrhythmic disorders is challenging because of their short-lasting, intermittent character. Conventional technologies of noninvasive ambulatory rhythm monitoring are limited by modest sensitivity. We present a novel form of wearable electrocardiogram (ECG) sensors providing an alternative tool for long-term rhythm monitoring with the potential of increased sensitivity to detect intermittent or subclinical arrhythmia. The objective was to assess the signal quality and R-R coverage of a wearable ECG sensor system compared to a standard 3-lead Holter...
January 21, 2019: Biosensors
Anitha Devadoss, Rhiannan Forsyth, Ryan Bigham, Hina Abbasi, Muhammad Ali, Zari Tehrani, Yufei Liu, Owen J Guy
Grafting thin polymer layers on graphene enables coupling target biomolecules to graphene surfaces, especially through amide and aldehyde linkages with carboxylic acid and primary amine derivatives, respectively. However, functionalizing monolayer graphene with thin polymer layers without affecting their exceptional electrical properties remains challenging. Herein, we demonstrate the controlled modification of chemical vapor deposition (CVD) grown single layer graphene with ultrathin polymer 1,5-diaminonaphthalene (DAN) layers using the electropolymerization technique...
January 18, 2019: Biosensors
Jesús E Contreras-Naranjo, Oscar Aguilar
Electrochemical immunosensors, EIs, are systems that combine the analytical power of electrochemical techniques and the high selectivity and specificity of antibodies in a solid phase immunoassay for target analyte. In EIs, the most used transducer platforms are screen printed electrodes, SPEs. Some characteristics of EIs are their low cost, portability for point of care testing (POCT) applications, high specificity and selectivity to the target molecule, low sample and reagent consumption and easy to use. Despite all these attractive features, still exist one to cover and it is the enhancement of the sensitivity of the EIs...
January 18, 2019: Biosensors
Libu Manjakkal, Wenting Dang, Nivasan Yogeswaran, Ravinder Dahiya
In this work, we present a potentiometric pH sensor on textile substrate for wearable applications. The sensitive (thick film graphite composite) and reference electrodes (Ag/AgCl) are printed on cellulose-polyester blend cloth. An excellent adhesion between printed electrodes allow the textile-based sensor to be washed with a reliable pH response. The developed textile-based pH sensor works on the basis of electrochemical reaction, as observed through the potentiometric, cyclic voltammetry (100 mV/s) and electrochemical impedance spectroscopic (10 mHz to 1 MHz) analysis...
January 16, 2019: Biosensors
Ashlesha Bhide, Sarah Cheeran, Sriram Muthukumar, Shalini Prasad
Simultaneous detection of correlated multi-biomarkers on a single low-cost platform in ultra-low fluid volumes with robustness is in growing demand for the development of wearable diagnostics. A non-faradaic biosensor for the simultaneous detection of alcohol, glucose, and lactate utilizing low volumes (1⁻5 μL) of sweat is demonstrated. Biosensing is implemented using nanotextured ZnO films integrated on a flexible porous membrane to achieve enhanced sensor performance. The ZnO sensing region is functionalized with enzymes specific for the detection of alcohol, glucose, and lactate in the ranges encompassing their physiologically relevant levels...
January 16, 2019: Biosensors
Helena Ukkonen, Simo Vuokila, Jopi J W Mikkonen, Hannah Dekker, Engelbert A J M Schulten, Elisabeth Bloemena, Arto Koistinen, Tulio A Valdez, Arja M Kullaa, Surya Pratap Singh
Radiation exposure during the course of treatment in head and neck cancer (HNC) patients can induce both structural and biochemical anomalies. The present study is focused on utilizing infrared imaging for the identification of the minor biochemical alterations in the oral mucosa. Chemical maps generated using glycoprotein band indicates its differential distribution along the superficial layer. Spectra extracted from this layer suggests changes in overall nucleic acid and protein content in response to the therapeutic irradiation...
January 13, 2019: Biosensors
Suzanne M Crowe, Spyridon Kintzios, Grigoris Kaltsas, Clovis S Palmer
The evaluation of glucose metabolic activity in immune cells is becoming an increasingly standard task in immunological research. In this study, we described a sensitive, inexpensive, and non-radioactive assay for the direct and rapid measurement of the metabolic activity of CD4+ T cells in culture. A portable, custom-built Cell Culture Metabolite Biosensor device was designed to measure the levels of acidification (a proxy for glycolysis) in cell-free CD4+ T cell culture media. In this assay, ex vivo activated CD4+ T cells were incubated in culture medium and mini electrodes were placed inside the cell free culture filtrates in 96-well plates...
January 9, 2019: Biosensors
Anna López de Guereñu, Philipp Bastian, Pablo Wessig, Leonard John, Michael U Kumke
Lanthanide-doped upconverting nanoparticles (UCNP) are being extensively studied for bioapplications due to their unique photoluminescence properties and low toxicity. Interest in RET applications involving UCNP is also increasing, but due to factors such as large sizes, ion emission distributions within the particles, and complicated energy transfer processes within the UCNP, there are still many questions to be answered. In this study, four types of core and core-shell NaYF₄-based UCNP co-doped with Yb3+ and Tm3+ as sensitizer and activator, respectively, were investigated as donors for the Methyl 5-(8-decanoylbenzo[1,2-d:4,5-d']bis([1,3]dioxole)-4-yl)-5-oxopentanoate (DBD-6) dye...
January 8, 2019: Biosensors
Estefanía Núñez-Carmona, Marco Abbatangelo, Veronica Sberveglieri
Campylobacter spp infection affects more than 200,000 people every year in Europe and in the last four years a trend shows an increase in campylobacteriosis. The main vehicle for transmission of the bacterium is contaminated food like meat, milk, fruit and vegetables. In this study, the aim was to find characteristic volatile organic compounds (VOCs) of C. jejuni in order to detect its presence with an array of metal oxide (MOX) gas sensors. Using a starting concentration of 10³ CFU/mL, VOCs were analyzed using Gas-Chromatography Mass-Spectrometry (GC-MS) with a Solid-Phase Micro Extraction (SPME) technique at the initial time (T0) and after 20 h (T20)...
January 7, 2019: Biosensors
Jeannine Jaeger, Florian Groher, Jacqueline Stamm, Dieter Spiehl, Johannes Braun, Edgar Dörsam, Beatrix Suess
The excessive use of antibiotics in food-producing animals causes a steady rise of multiple antibiotic resistance in foodborne bacteria. Next to sulfonamides, the most common antibiotics groups are fluoroquinolones, aminoglycosides, and ß-lactams. Therefore, there is a need for a quick, efficient, and low-cost detection procedure for antibiotics. In this study, we propose an inkjet-printed aptamer-based biosensor developed for the detection of the fluoroquinolone ciprofloxacin. Due to their extraordinary high affinity and specificity, aptamers are already widely used in various applications...
January 2, 2019: Biosensors
Jad Sabek, Luis Torrijos-Morán, Amadeu Griol, Zeneida Díaz Betancor, María-José Bañuls Polo, Ángel Maquieira, Jaime García-Rupérez
A protocol for the covalent biofunctionalization of silicon-based biosensors using a UV light-induced thiol⁻ene coupling (TEC) reaction has been developed. This biofunctionalization approach has been used to immobilize half antibodies (hIgG), which have been obtained by means of a tris(2-carboxyethyl)phosphine (TCEP) reduction at the hinge region, to the surface of a vinyl-activated silicon-on-insulator (SOI) nanophotonic sensing chip. The response of the sensing structures within the nanophotonic chip was monitored in real time during the biofunctionalization process, which has allowed us to confirm that the bioconjugation of the thiol-terminated bioreceptors onto the vinyl-activated sensing surface is only initiated upon UV light photocatalysis...
December 30, 2018: Biosensors
Mioara Larion, Tyrone Dowdy, Victor Ruiz-Rodado, Matthew W Meyer, Hua Song, Wei Zhang, Dionne Davis, Mark R Gilbert, Adrian Lita
Isocitrate dehydrogenase 1 (IDH1) mutations in gliomas, fibrosarcoma, and other cancers leads to a novel metabolite, D-2-hydroxyglutarate, which is proposed to cause tumorigenesis. The production of this metabolite also causes vulnerabilities in cellular metabolism, such as lowering NADPH levels. To exploit this vulnerability, we treated glioma and fibrosarcoma cells that harbor an IDH1 mutation with an inhibitor of nicotinamide adenine dinucleotide (NAD⁺) salvage pathway, FK866, and observed decreased viability in these cells...
December 28, 2018: Biosensors
Fabio A Bahos, Arianee Sainz-Vidal, Celia Sánchez-Pérez, José M Saniger, Isabel Gràcia, María M Saniger-Alba, Daniel Matatagui
In the present work, a novel, portable and innovative eNose composed of a surface acoustic wave (SAW) sensor array based on zeolitic imidazolate frameworks, ZIF-8 and ZIF-67 nanocrystals (pure and combined with gold nanoparticles), as sensitive layers has been tested as a non-invasive system to detect different disease markers, such as acetone, ethanol and ammonia, related to the diagnosis and control of diabetes mellitus through exhaled breath. The sensors have been prepared by spin coating, achieving continuous sensitive layers at the surface of the SAW device...
December 26, 2018: Biosensors
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"