Read by QxMD icon Read


Evelyne Beerling, Ilse Oosterom, Emile Voest, Martijn Lolkema, Jacco van Rheenen
Curing pancreatic cancer is difficult as metastases often determine the poor clinical outcome. To gain more insight into the metastatic behavior of pancreatic cancer cells, we characterized migratory cells in primary pancreatic tumors using intravital microscopy. We visualized the migratory behavior of primary tumor cells of a genetically engineered pancreatic cancer mouse model and found that pancreatic tumor cells migrate with a mesenchymal morphology as single individual cells or collectively as a stream of non-cohesive single motile cells...
2016: IntraVital
Christian Lehmann, Nicholas B Fisher, Barna Tugwell, Juan Zhou
Intravital microscopy (IVM) of the pancreas has been proven to be an invaluable tool in pancreatitis, transplantation and ischemia/reperfusion research. Also in type 1 diabetes (T1D) pancreatic IVM offers unique advantages for the elucidation of the disease process. Female non-obese diabetic (NOD) mice develop T1D spontaneously by 40 weeks of age. Our goal was to establish an IVM-based method to study early pancreatic inflammation in NOD mice, which can be used to screen novel medications to prevent or delay T1D in future studies...
2016: IntraVital
Jasmine Lau, Chi Ching Goh, Sapna Devi, Jo Keeble, Peter See, Florent Ginhoux, Lai Guan Ng
Intravital imaging by multiphoton microscopy is a powerful tool to gain invaluable insight into tissue biology and function. Here, we provide a step-by-step tissue preparation protocol for imaging the mouse tibialis anterior skeletal muscle. Additionally, we include steps for jugular vein catheterization that allow for well-controlled intravenous reagent delivery. Preparation of the tibialis anterior muscle is minimally invasive, reducing the chances of inducing damage and inflammation prior to imaging. The tibialis anterior muscle is useful for imaging leukocyte interaction with vascular endothelium, and to understand muscle contraction biology...
2016: IntraVital
Luc Mercier, Johann Böhm, Nina Fekonja, Guillaume Allio, Yves Lutz, Marc Koch, Jacky G Goetz, Jocelyn Laporte
Skeletal muscle structure and function are altered in different myopathies. However, the understanding of the molecular and cellular mechanisms mainly rely on in vitro and ex vivo investigations in mammalian models. In order to monitor in vivo the intracellular structure of the neuromuscular system in its environment under normal and pathological conditions, we set-up and validated non-invasive imaging of ear and leg muscles in mice. This original approach allows simultaneous imaging of different cellular and intracellular structures such as neuromuscular junctions and sarcomeres, reconstruction of the 3D architecture of the neuromuscular system, and video recording of dynamic events such as spontaneous muscle fiber contraction...
2016: IntraVital
Vassiliy Tsytsarev, Elena Pumbo, Qinggong Tang, Chao-Wei Chen, Vyacheslav Kalchenko, Yu Chen
The facial whiskers of rodents act as a high-resolution tactile apparatus that allow the animal to detect the finest details of its environment. Previously it was shown that whisker-sensitive neurons in the somatosensory cortex show frequency selectivity to small amplitude stimuli, An intravital voltage-sensitive dye optical imaging (VSDi) method in combination with the different frequency whisker stimulation was used in order to visualize neural activity in the mice somatosensory cortex in response to the stimulation of a single whisker by different frequencies...
2016: IntraVital
Tammy Sobolik, Ying-Jun Su, Will Ashby, David K Schaffer, Sam Wells, John P Wikswo, Andries Zijlstra, Ann Richmond
We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques...
2016: IntraVital
Catalina Lodillinsky, Katrina Podsypanina, Philippe Chavrier
Extracellular vesicles (EVs) are lipid-bilayer-enclosed vesicles that contain proteins, lipids and nucleic acids. EVs produced by cells from healthy tissues circulate in the blood and body fluids, and can be taken up by unrelated cells. As they have the capacity to transfer cargo proteins, lipids and nucleic acids (mostly mRNAs and miRNAs) between different cells in the body, EVs are emerging as mediators of intercellular communication that could modulate cell behavior, tissue homeostasis and regulation of physiological functions...
2016: IntraVital
Yarong Wang, Haoxuan Wang, Jiufeng Li, David Entenberg, Alice Xue, Weigang Wang, John Condeelis
Tumor hypoxia is linked to tumor progression, metastasis, and therapy resistance. However, the underlying mechanisms behind this linkage are not fully understood. Here we present a novel fluorescent mCherry hypoxia-responsive marker that can be used in real time imaging to specifically and sensitively identify hypoxic cells in vivo at single cell resolution. Tumors derived from triple negative tumor cells expressing the hypoxia marker reveal that the hypoxic tumor cells congregate near flowing blood vessels...
2016: IntraVital
James K Williams, David Entenberg, Yarong Wang, Alvaro Avivar-Valderas, Michael Padgen, Ashley Clark, Julio A Aguirre-Ghiso, James Castracane, John S Condeelis
The tumor microenvironment is recognized as playing a significant role in the behavior of tumor cells and their progression to metastasis. However, tools to manipulate the tumor microenvironment directly, and image the consequences of this manipulation with single cell resolution in real time in vivo, are lacking. We describe here a method for the direct, local manipulation of microenvironmental parameters through the use of an implantable Induction Nano Intravital Device (iNANIVID) and simultaneous in vivo visualization of the results at single-cell resolution...
2016: IntraVital
David Entenberg, Carolina Rodriguez-Tirado, Yu Kato, Takanori Kitamura, Jeffrey W Pollard, John Condeelis
To better understand breast cancer metastatic cell seeding, we have employed multiphoton microscopy and a vacuum stabilized window which eliminates the need for complex registration software, video rate microscopy or specialized gating electronics to observe the initial steps of tumor cell seeding within the living, breathing lung. We observe that upon arrival to the lung, tumor cells are found exclusively in capillary vessels, completely fill their volume and display an initial high level of protrusive activity that dramatically reduces over time...
September 2015: IntraVital
Kurt I Anderson
No abstract text is available yet for this article.
May 2015: IntraVital
Mirela Bălan, Friedemann Kiefer
Creating a model for intravital visualization of femoral bone marrow, a major site of hematopoiesis in adult mammalian organisms, poses a serious challenge, in that it needs to overcome bone opacity and the inaccessibility of marrow. Furthermore, meaningful analysis of bone marrow developmental and differentiation processes requires the repetitive observation of the same site over long periods of time, which we refer to as chronic imaging. To surmount these issues, we developed a chronic intravital imaging model that allows the observation of split femurs, ectopically transplanted into a dorsal skinfold chamber of a host mouse...
May 2015: IntraVital
Martin Lee, Andy Downes, You-Ying Chau, Bryan Serrels, Nick Hastie, Alistair Elfick, Valerie Brunton, Margaret Frame, Alan Serrels
The use of confocal and multi-photon microscopy for intra-vital cancer imaging has impacted on our understanding of cancer cell behavior and interaction with the surrounding tumor microenvironment in vivo. However, many studies to-date rely on the use fluorescent dyes or genetically encoded probes that enable visualization of a structure or cell population of interest, but do not illuminate the complexity of the surrounding tumor microenvironment. Here, we show that multi-modal microscopy combining 2-photon fluorescence with CARS can begin to address this deficit, enabling detailed imaging of the tumor niche without the need for additional labeling...
January 2015: IntraVital
Heather D Hickman
CD8(+) T cells play a critical role in host defense against pathogens and tumors. Much of our current knowledge of the activation and subsequent effector activities of CD8(+) T cells has been gained using ex vivo approaches examining the T cell population en masse for surface phenotype, activation status and the production of effector molecules. Thus, the precise behaviors and diversity of individual CD8(+) T cells responding to virus infection in vivo have not been extensively explored, leaving many unanswered questions relevant to the rational design of antiviral vaccines and therapeutics...
January 2015: IntraVital
Takashi Hato, Ruben Sandoval, Pierre C Dagher
Tubular cell apoptosis is a major phenotype of cell death in various forms of acute kidney injury. Quantifying apoptosis in fixed tissues is problematic because apoptosis evolves over time and dead cells are rapidly cleared by the phagocytic system. Phiphilux is a fluorescent probe that is activated specifically by caspase 3 and does not inhibit the subsequent activity of this effector caspase. It has been used successfully to quantify apoptosis in cell culture. Here we examined the feasibility of using Phiphilux to measure renal tubular apoptosis progression over time in live animals using intravital 2-photon microscopy...
2015: IntraVital
Kathleen Burke, Edward Brown
Metastasis is the leading cause of cancer mortality, resulting from changes in the tumor microenvironment which increases tumor cell migration, dispersal to distant organs, and subsequent survival. This is accompanied by changes in tumor collagen which may allow cells to travel more efficiently away from a primary tumor and invade the surrounding tissue. Second Harmonic generation (SHG) is an intrinsic optical signal that has expanded our understanding of collagen evolution throughout tumor progression. This article addresses current research into tumor progression using SHG, as well as the future prospects of using SHG to advance our understanding of the tumor microenvironment...
December 2014: IntraVital
Cora Sau Wan Lai
Dendritic spines are the postsynaptic part of most excitatory synapses in the mammalian brain. Recent works have suggested that the structural and functional plasticity of dendritic spines have been associated with information coding and memories. Advances in imaging and labeling techniques enable the study of dendritic spine dynamics in vivo. This perspective focuses on intravital imaging studies of dendritic spine plasticity in the neocortex. I will introduce imaging tools for studying spine dynamics and will further review current findings on spine structure and function under various physiological and pathological conditions...
December 2014: IntraVital
Margaret F Bennewitz, Simon C Watkins, Prithu Sundd
Sickle cell disease (SCD) is a genetic disorder that leads to red blood cell (RBC) sickling, hemolysis and the upregulation of adhesion molecules on sickle RBCs. Chronic hemolysis in SCD results in a hyper-inflammatory state characterized by activation of circulating leukocytes, platelets and endothelial cells even in the absence of a crisis. A crisis in SCD is often triggered by an inflammatory stimulus and can lead to the acute chest syndrome (ACS), which is a type of lung injury and a leading cause of mortality among SCD patients...
July 7, 2014: IntraVital
R Dixon Dorand, Deborah S Barkauskas, Teresa A Evans, Agne Petrosiute, Alex Y Huang
Fluorescent imaging coupled with high-resolution femto-second pulsed infrared lasers allows for interrogation of cellular interactions deeper in living tissues than ever imagined. Intra-vital imaging of the central nervous system (CNS) has provided insights into neuronal development, synaptic transmission, and even immune interactions. In this review we will discuss the two most common intravital approaches for studying the cerebral cortex in the live mouse brain for pre-clinical studies, the thinned skull and cranial window techniques, and focus on the advantages and drawbacks of each approach...
May 2014: IntraVital
Ruben M Sandoval, Exing Wang, Bruce A Molitoris
Maximizing 2-photon parameters used in acquiring images for quantitative intravital microscopy, especially when high sensitivity is required, remains an open area of investigation. Here we present data on correctly setting the black level of the photomultiplier tube amplifier by adjusting the offset to allow for accurate quantitation of low intensity processes. When the black level is set too high some low intensity pixel values become zero and a nonlinear degradation in sensitivity occurs rendering otherwise quantifiable low intensity values virtually undetectable...
March 1, 2014: IntraVital
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"