Read by QxMD icon Read

Journal of Machine Learning Research: JMLR

Botao Hao, Will Wei Sun, Yufeng Liu, Guang Cheng
We consider joint estimation of multiple graphical models arising from heterogeneous and high-dimensional observations. Unlike most previous approaches which assume that the cluster structure is given in advance, an appealing feature of our method is to learn cluster structure while estimating heterogeneous graphical models. This is achieved via a high dimensional version of Expectation Conditional Maximization (ECM) algorithm (Meng and Rubin, 1993). A joint graphical lasso penalty is imposed on the conditional maximization step to extract both homogeneity and heterogeneity components across all clusters...
April 2018: Journal of Machine Learning Research: JMLR
Shuhan Liang, Wenbin Lu, Rui Song, Lan Wang
To find optimal decision rule, Fan et al. (2016) proposed an innovative concordance-assisted learning algorithm which is based on maximum rank correlation estimator. It makes better use of the available information through pairwise comparison. However the objective function is discontinuous and computationally hard to optimize. In this paper, we consider a convex surrogate loss function to solve this problem. In addition, our algorithm ensures sparsity of decision rule and renders easy interpretation. We derive the L 2 error bound of the estimated coefficients under ultra-high dimension...
April 2018: Journal of Machine Learning Research: JMLR
Maruan Al-Shedivat, Andrew Gordon Wilson, Yunus Saatchi, Zhiting Hu, Eric P Xing
Many applications in speech, robotics, finance, and biology deal with sequential data, where ordering matters and recurrent structures are common. However, this structure cannot be easily captured by standard kernel functions. To model such structure, we propose expressive closed-form kernel functions for Gaussian processes. The resulting model, GP-LSTM, fully encapsulates the inductive biases of long short-term memory (LSTM) recurrent networks, while retaining the non-parametric probabilistic advantages of Gaussian processes...
January 2017: Journal of Machine Learning Research: JMLR
David Hallac, Christopher Wong, Steven Diamond, Abhijit Sharang, Rok Sosič, Stephen Boyd, Jure Leskovec
SnapVX is a high-performance solver for convex optimization problems defined on networks. For problems of this form, SnapVX provides a fast and scalable solution with guaranteed global convergence. It combines the capabilities of two open source software packages: and CVXPY. is a large scale graph processing library, and CVXPY provides a general modeling framework for small-scale subproblems. SnapVX offers a customizable yet easy-to-use Python interface with "out-of-the-box" functionality...
2017: Journal of Machine Learning Research: JMLR
Jun Fan, Yirong Wu, Ming Yuan, David Page, Jie Liu, Irene M Ong, Peggy Peissig, Elizabeth Burnside
Predicting breast cancer risk has long been a goal of medical research in the pursuit of precision medicine. The goal of this study is to develop novel penalized methods to improve breast cancer risk prediction by leveraging structure information in electronic health records. We conducted a retrospective case-control study, garnering 49 mammography descriptors and 77 high-frequency/low-penetrance single-nucleotide polymorphisms (SNPs) from an existing personalized medicine data repository. Structured mammography reports and breast imaging features have long been part of a standard electronic health record (EHR), and genetic markers likely will be in the near future...
December 2016: Journal of Machine Learning Research: JMLR
Ashley Petersen, Noah Simon, Daniela Witten
We consider the problem of predicting an outcome variable on the basis of a small number of covariates, using an interpretable yet non-additive model. We propose convex regression with interpretable sharp partitions (CRISP) for this task. CRISP partitions the covariate space into blocks in a data-adaptive way, and fits a mean model within each block. Unlike other partitioning methods, CRISP is fit using a non-greedy approach by solving a convex optimization problem, resulting in low-variance fits. We explore the properties of CRISP, and evaluate its performance in a simulation study and on a housing price data set...
June 2016: Journal of Machine Learning Research: JMLR
Matey Neykov, Jun S Liu, Tianxi Cai
It is known that for a certain class of single index models (SIMs) [Formula: see text], support recovery is impossible when X ~
May 2016: Journal of Machine Learning Research: JMLR
Xin Wang, Jinbo Bi, Shipeng Yu, Jiangwen Sun, Minghu Song
We investigate a general framework of multiplicative multitask feature learning which decomposes individual task's model parameters into a multiplication of two components. One of the components is used across all tasks and the other component is task-specific. Several previous methods can be proved to be special cases of our framework. We study the theoretical properties of this framework when different regularization conditions are applied to the two decomposed components. We prove that this framework is mathematically equivalent to the widely used multitask feature learning methods that are based on a joint regularization of all model parameters, but with a more general form of regularizers...
April 2016: Journal of Machine Learning Research: JMLR
Robert J B Goudie, Sach Mukherjee
We propose a Gibbs sampler for structure learning in directed acyclic graph (DAG) models. The standard Markov chain Monte Carlo algorithms used for learning DAGs are random-walk Metropolis-Hastings samplers. These samplers are guaranteed to converge asymptotically but often mix slowly when exploring the large graph spaces that arise in structure learning. In each step, the sampler we propose draws entire sets of parents for multiple nodes from the appropriate conditional distribution. This provides an efficient way to make large moves in graph space, permitting faster mixing whilst retaining asymptotic guarantees of convergence...
April 2016: Journal of Machine Learning Research: JMLR
Steven Diamond, Stephen Boyd
CVXPY is a domain-specific language for convex optimization embedded in Python. It allows the user to express convex optimization problems in a natural syntax that follows the math, rather than in the restrictive standard form required by solvers. CVXPY makes it easy to combine convex optimization with high-level features of Python such as parallelism and object-oriented design. CVXPY is available at under the GPL license, along with documentation and examples.
April 2016: Journal of Machine Learning Research: JMLR
Chong Zhang, Yufeng Liu, Yichao Wu
For spline regressions, it is well known that the choice of knots is crucial for the performance of the estimator. As a general learning framework covering the smoothing splines, learning in a Reproducing Kernel Hilbert Space (RKHS) has a similar issue. However, the selection of training data points for kernel functions in the RKHS representation has not been carefully studied in the literature. In this paper we study quantile regression as an example of learning in a RKHS. In this case, the regular squared norm penalty does not perform training data selection...
April 2016: Journal of Machine Learning Research: JMLR
Rina Foygel Barber, Emil Y Sidky
Many optimization problems arising in high-dimensional statistics decompose naturally into a sum of several terms, where the individual terms are relatively simple but the composite objective function can only be optimized with iterative algorithms. In this paper, we are interested in optimization problems of the form F( Kx ) + G( x ), where K is a fixed linear transformation, while F and G are functions that may be nonconvex and/or nondifferentiable. In particular, if either of the terms are nonconvex, existing alternating minimization techniques may fail to converge; other types of existing approaches may instead be unable to handle nondifferentiability...
2016: Journal of Machine Learning Research: JMLR
Lu Tang, Peter X K Song
As data sets of related studies become more easily accessible, combining data sets of similar studies is often undertaken in practice to achieve a larger sample size and higher power. A major challenge arising from data integration pertains to data heterogeneity in terms of study population, study design, or study coordination. Ignoring such heterogeneity in data analysis may result in biased estimation and misleading inference. Traditional techniques of remedy to data heterogeneity include the use of interactions and random effects, which are inferior to achieving desirable statistical power or providing a meaningful interpretation, especially when a large number of smaller data sets are combined...
2016: Journal of Machine Learning Research: JMLR
Jianqing Fan, Wen-Xin Zhou
Many data-mining and statistical machine learning algorithms have been developed to select a subset of covariates to associate with a response variable. Spurious discoveries can easily arise in high-dimensional data analysis due to enormous possibilities of such selections. How can we know statistically our discoveries better than those by chance? In this paper, we define a measure of goodness of spurious fit, which shows how good a response variable can be fitted by an optimally selected subset of covariates under the null model, and propose a simple and effective LAMM algorithm to compute it...
2016: Journal of Machine Learning Research: JMLR
Yuanjia Wang, Tianle Chen, Donglin Zeng
Learning risk scores to predict dichotomous or continuous outcomes using machine learning approaches has been studied extensively. However, how to learn risk scores for time-to-event outcomes subject to right censoring has received little attention until recently. Existing approaches rely on inverse probability weighting or rank-based regression, which may be inefficient. In this paper, we develop a new support vector hazards machine (SVHM) approach to predict censored outcomes. Our method is based on predicting the counting process associated with the time-to-event outcomes among subjects at risk via a series of support vector machines...
2016: Journal of Machine Learning Research: JMLR
Daniel J Lizotte, Eric B Laber
We present new methodology based on Multi-Objective Markov Decision Processes for developing sequential decision support systems from data. Our approach uses sequential decision-making data to provide support that is useful to many different decision-makers, each with different, potentially time-varying preference. To accomplish this, we develop an extension of fitted-Q iteration for multiple objectives that computes policies for all scalarization functions, i.e. preference functions, simultaneously from continuous-state, finite-horizon data...
2016: Journal of Machine Learning Research: JMLR
Byron C Wallace, Joël Kuiper, Aakash Sharma, Mingxi Brian Zhu, Iain J Marshall
Systematic reviews underpin Evidence Based Medicine (EBM) by addressing precise clinical questions via comprehensive synthesis of all relevant published evidence. Authors of systematic reviews typically define a Population/Problem, Intervention, Comparator, and Outcome (a PICO criteria) of interest, and then retrieve, appraise and synthesize results from all reports of clinical trials that meet these criteria. Identifying PICO elements in the full-texts of trial reports is thus a critical yet time-consuming step in the systematic review process...
2016: Journal of Machine Learning Research: JMLR
Xiang Zhang, Yichao Wu, Lan Wang, Runze Li
Information criteria have been popularly used in model selection and proved to possess nice theoretical properties. For classification, Claeskens et al. (2008) proposed support vector machine information criterion for feature selection and provided encouraging numerical evidence. Yet no theoretical justification was given there. This work aims to fill the gap and to provide some theoretical justifications for support vector machine information criterion in both fixed and diverging model spaces. We first derive a uniform convergence rate for the support vector machine solution and then show that a modification of the support vector machine information criterion achieves model selection consistency even when the number of features diverges at an exponential rate of the sample size...
2016: Journal of Machine Learning Research: JMLR
Eunho Yang, Pradeep Ravikumar, Genevera I Allen, Zhandong Liu
Undirected graphical models, or Markov networks, are a popular class of statistical models, used in a wide variety of applications. Popular instances of this class include Gaussian graphical models and Ising models. In many settings, however, it might not be clear which subclass of graphical models to use, particularly for non-Gaussian and non-categorical data. In this paper, we consider a general sub-class of graphical models where the node-wise conditional distributions arise from exponential families. This allows us to derive multivariate graphical model distributions from univariate exponential family distributions, such as the Poisson, negative binomial, and exponential distributions...
December 2015: Journal of Machine Learning Research: JMLR
Han Liu, Lie Wang, Tuo Zhao
We propose a calibrated multivariate regression method named CMR for fitting high dimensional multivariate regression models. Compared with existing methods, CMR calibrates regularization for each regression task with respect to its noise level so that it simultaneously attains improved finite-sample performance and tuning insensitiveness. Theoretically, we provide sufficient conditions under which CMR achieves the optimal rate of convergence in parameter estimation. Computationally, we propose an efficient smoothed proximal gradient algorithm with a worst-case numerical rate of convergence O(1/ϵ), where ϵ is a pre-specified accuracy of the objective function value...
August 2015: Journal of Machine Learning Research: JMLR
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"