Read by QxMD icon Read

Annual Review of Analytical Chemistry

Tim Albrecht
Solid-state nanopores and nanopipettes are an exciting class of single-molecule sensors that has grown enormously over the last two decades. They offer a platform for testing fundamental concepts of stochasticity and transport at the nanoscale, for studying single-molecule biophysics and, increasingly, also for new analytical applications and in biomedical sensing. This review covers some fundamental aspects underpinning sensor operation and transport and, at the same time, it aims to put these into context as an analytical technique...
February 1, 2019: Annual Review of Analytical Chemistry
Mimi Shin, Ying Wang, Jason R Borgus, B Jill Venton
Electrochemical measurements of neurotransmitters provide insight into the dynamics of neurotransmission. In this review, we describe the development of electrochemical measurements of neurotransmitters and how they started with extrasynaptic measurements but now are pushing toward synaptic measurements. Traditionally, behavioral measurements with biosensors or fast-scan cyclic voltammetry have monitored extrasynaptic levels of neurotransmitters, such as dopamine, serotonin, adenosine, glutamate, and acetylcholine...
February 1, 2019: Annual Review of Analytical Chemistry
Mukul Sonker, Daihyun Kim, Ana Egatz-Gomez, Alexandra Ros
Separations of bioanalytes require robust, effective, and selective migration phenomena. However, due to the complexity of biological matrices such as body fluids or tissue, these requirements are difficult to achieve. The separations field is thus constantly evolving to develop suitable methods to separate biomarkers and fractionate biospecimens for further interrogation of biomolecular content. Advances in the field of microfabrication allow the tailored generation of micro- and nanofluidic environments. These can be exploited to induce interactions and dynamics of biological species with the corresponding geometrical features, which in turn can be capitalized for novel separation approaches...
January 30, 2019: Annual Review of Analytical Chemistry
J Timoshenko, Z Duan, G Henkelman, R M Crooks, A I Frenkel
Extended X-ray absorption fine structure (EXAFS) spectroscopy is a premiere method for analysis of the structure and structural transformation of nanoparticles. Extraction of analytical information about the three-dimensional structure and dynamics of metal-metal bonds from EXAFS spectra requires special care due to their markedly nonbulk-like character. In recent decades, significant progress has been made in the first-principles modeling of structure and properties of nanoparticles. In this review, we summarize new approaches for EXAFS data analysis that incorporate particle structure modeling into the process of structural refinement...
January 30, 2019: Annual Review of Analytical Chemistry
Tom Wirtz, Olivier De Castro, Jean-Nicolas Audinot, Patrick Philipp
The helium ion microscope (HIM) has emerged as an instrument of choice for patterning, imaging and, more recently, analytics at the nanoscale. Here, we review secondary electron imaging on the HIM and the various methodologies and hardware components that have been developed to confer analytical capabilities to the HIM. Secondary electron-based imaging can be performed at resolutions down to 0.5 nm with high contrast, high depth of field, and directly on insulating samples. Analytical methods include secondary electron hyperspectral imaging (SEHI), scanning transmission ion microscopy (STIM), backscattering spectrometry and, in particular, secondary ion mass spectrometry (SIMS)...
January 30, 2019: Annual Review of Analytical Chemistry
Pratip K Chattopadhyay, Aidan F Winters, Woodrow E Lomas Iii, Andressa S Laino, David M Woods
Thousands of transcripts and proteins confer function and discriminate cell types in the body. Using high-parameter technologies, we can now measure many of these markers at once, and multiple platforms are now capable of analysis on a cell-by-cell basis. Three high-parameter single-cell technologies have particular potential for discovering new biomarkers, revealing disease mechanisms, and increasing our fundamental understanding of cell biology. We review these three platforms (high-parameter flow cytometry, mass cytometry, and a new class of technologies called integrated molecular cytometry platforms) in this article...
January 30, 2019: Annual Review of Analytical Chemistry
Farhan Kamili, Hang Lu
Microfluidics has proven to be a key tool in quantitative biological research. The C. elegans research community in particular has developed a variety of microfluidic platforms to investigate sensory systems, development, aging, and physiology of the nematode. Critical for the growth of this field, however, has been the implementation of concurrent advanced microscopy, hardware, and software technologies that enable the discovery of novel biology. In this review, we highlight recent innovations in microfluidic platforms used for assaying C...
June 12, 2018: Annual Review of Analytical Chemistry
Elena E Ferapontova
Sensitive, specific, and fast analysis of nucleic acids (NAs) is strongly needed in medicine, environmental science, biodefence, and agriculture for the study of bacterial contamination of food and beverages and genetically modified organisms. Electrochemistry offers accurate, simple, inexpensive, and robust tools for the development of such analytical platforms that can successfully compete with other approaches for NA detection. Here, electrode reactions of DNA, basic principles of electrochemical NA analysis, and their relevance for practical applications are reviewed and critically discussed...
June 12, 2018: Annual Review of Analytical Chemistry
R Graham Cooks, Xin Yan
Mass spectrometry is the science and technology of ions. As such, it is concerned with generating ions, measuring their properties, following their reactions, isolating them, and using them to build and transform materials. Instrumentation is an essential element of these activities, and analytical applications are one driving force. Work from the Aston Laboratories at Purdue University's Department of Chemistry is described here, with an emphasis on accelerated reactions of ions in solution and small-scale synthesis; ion/surface collision processes, including surface-induced dissociation (SID) and ion soft landing; and applications to tissue imaging...
June 12, 2018: Annual Review of Analytical Chemistry
Shudong Zhang, Mingzhi Li, Bin Su, Yuanhua Shao
This review summarizes progress in the fabrication, modification, characterization, and applications of nanopipettes since 2010. A brief history of nanopipettes is introduced, and the details of fabrication, modification, and characterization of nanopipettes are provided. Applications of nanopipettes in chemical analysis are the focus in several cases, including recent progress in imaging; in the study of single molecules, single nanoparticles, and single cells; in fundamental investigations of charge transfer (ion and electron) reactions at liquid/liquid interfaces; and as hyphenated techniques combined with other methods to study the mechanisms of complicated electrochemical reactions and to conduct bioanalysis...
June 12, 2018: Annual Review of Analytical Chemistry
J Astor Ankney, Adil Muneer, Xian Chen
Mass spectrometry-based quantitative proteomics is a powerful tool for gaining insights into function and dynamics of biological systems. However, peptides with different sequences have different ionization efficiencies, and their intensities in a mass spectrum are not correlated with their abundances. Therefore, various label-free or stable isotope label-based quantitation methods have emerged to assist mass spectrometry to perform comparative proteomic experiments, thus enabling nonbiased identification of thousands of proteins differentially expressed in healthy versus diseased cells...
June 12, 2018: Annual Review of Analytical Chemistry
Johannes Thoma, K Tanuj Sapra, Daniel J Müller
Single-molecule force spectroscopy (SMFS) has been widely applied to study the mechanical unfolding and folding of transmembrane proteins. Here, we review the recent progress in characterizing bacterial and human transmembrane β-barrel proteins by SMFS. First, we describe the mechanical unfolding of transmembrane β-barrels, which follows a general mechanism dictated by the sequential unfolding and extraction of individual β-strands and β-hairpins from membranes. Upon force relaxation, the unfolded polypeptide can insert stepwise into the membrane as single β-strands or β-hairpins to fold as the native β-barrel...
June 12, 2018: Annual Review of Analytical Chemistry
David Gasperino, Ted Baughman, Helen V Hsieh, David Bell, Bernhard H Weigl
The performance, field utility, and low cost of lateral flow assays (LFAs) have driven a tremendous shift in global health care practices by enabling diagnostic testing in previously unserved settings. This success has motivated the continued improvement of LFAs through increasingly sophisticated materials and reagents. However, our mechanistic understanding of the underlying processes that drive the informed design of these systems has not received commensurate attention. Here, we review the principles underpinning LFAs and the historical evolution of theory to predict their performance...
June 12, 2018: Annual Review of Analytical Chemistry
Kaiyan Qiu, Ghazaleh Haghiashtiani, Michael C McAlpine
Medical errors are a major concern in clinical practice, suggesting the need for advanced surgical aids for preoperative planning and rehearsal. Conventionally, CT and MRI scans, as well as 3D visualization techniques, have been utilized as the primary tools for surgical planning. While effective, it would be useful if additional aids could be developed and utilized in particularly complex procedures involving unusual anatomical abnormalities that could benefit from tangible objects providing spatial sense, anatomical accuracy, and tactile feedback...
June 12, 2018: Annual Review of Analytical Chemistry
Samuel J Cobb, Zoe J Ayres, Julie V Macpherson
Boron doped diamond (BDD) is continuing to find numerous electrochemical applications across a diverse range of fields due to its unique properties, such as having a wide solvent window, low capacitance, and reduced resistance to fouling and mechanical robustness. In this review, we showcase the latest developments in the BDD electrochemical field. These are driven by a greater understanding of the relationship between material (surface) properties, required electrochemical performance, and improvements in synthetic growth/fabrication procedures, including material postprocessing...
June 12, 2018: Annual Review of Analytical Chemistry
Yi Wang, Allan Guan, Samanthi Wickramasekara, K Scott Phillips
In the United States, regulatory science is the science of developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of all Food and Drug Administration-regulated products. Good regulatory science facilitates consumer access to innovative medical devices that are safe and effective throughout the Total Product Life Cycle (TPLC). Because the need to measure things is fundamental to the regulatory science of medical devices, analytical chemistry plays an important role, contributing to medical device technology in two ways: It can be an integral part of an innovative medical device (e...
June 12, 2018: Annual Review of Analytical Chemistry
Allister F McGuire, Francesca Santoro, Bianxiao Cui
Measurements of the intracellular state of mammalian cells often require probes or molecules to breach the tightly regulated cell membrane. Mammalian cells have been shown to grow well on vertical nanoscale structures in vitro, going out of their way to reach and tightly wrap the structures. A great deal of research has taken advantage of this interaction to bring probes close to the interface or deliver molecules with increased efficiency or ease. In turn, techniques have been developed to characterize this interface...
June 12, 2018: Annual Review of Analytical Chemistry
Cameron L Bentley, Alan M Bond, Jie Zhang
Nonhaloaluminate ionic liquids (ILs) have received considerable attention as alternatives to molecular solvents in diverse applications spanning the fields of physical, chemical, and biological science. One important and often overlooked aspect of the implementation of these designer solvents is how the properties of the IL formulation affect (electro)chemical reactivity. This aspect is emphasized herein, where recent (voltammetric) studies on the energetics of proton (H+ ) transfer and electrode reaction mechanisms of the H+ /H2 process in IL media are highlighted and discussed...
June 12, 2018: Annual Review of Analytical Chemistry
Xin Gu, Michael J Trujillo, Jacob E Olson, Jon P Camden
Owing to its extreme sensitivity and easy execution, surface-enhanced Raman spectroscopy (SERS) now finds application for a wide variety of problems requiring sensitive and targeted analyte detection. This widespread application has prompted a proliferation of different SERS-based sensors, suggesting the need for a framework to classify existing methods and guide the development of new techniques. After a brief discussion of the general SERS modalities, we classify SERS-based sensors according the origin of the signal...
June 12, 2018: Annual Review of Analytical Chemistry
Mathieu Odijk, Albert van den Berg
In this review, we summarize recent advances in nanoscale electrochemistry, including the use of nanoparticles, carbon nanomaterials, and nanowires. Exciting developments are reported for nanoscale redox cycling devices, which can chemically amplify signal readout. We also discuss promising high-frequency techniques such as nanocapacitive CMOS sensor arrays or heterodyning. In addition, we review electrochemical microreactors for use in (drug) synthesis, biocatalysis, water treatment, or to electrochemically degrade urea for use in a portable artificial kidney...
June 12, 2018: Annual Review of Analytical Chemistry
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"