journal
https://read.qxmd.com/read/38291231/machine-learning-identifies-key-metabolic-reactions-in-bacterial-growth-on-different-carbon-sources
#21
JOURNAL ARTICLE
Hyunjae Woo, Youngshin Kim, Dohyeon Kim, Sung Ho Yoon
Carbon source-dependent control of bacterial growth is fundamental to bacterial physiology and survival. However, pinpointing the metabolic steps important for cell growth is challenging due to the complexity of cellular networks. Here, the elastic net model and multilayer perception model that integrated genome-wide gene-deletion data and simulated flux distributions were constructed to identify metabolic reactions beneficial or detrimental to Escherichia coli grown on 30 different carbon sources. Both models outperformed traditional in silico methods by identifying not just essential reactions but also nonessential ones that promote growth...
January 30, 2024: Molecular Systems Biology
https://read.qxmd.com/read/38287148/systematic-identification-of-20s-proteasome-substrates
#22
JOURNAL ARTICLE
Monika Pepelnjak, Rivkah Rogawski, Galina Arkind, Yegor Leushkin, Irit Fainer, Gili Ben-Nissan, Paola Picotti, Michal Sharon
For years, proteasomal degradation was predominantly attributed to the ubiquitin-26S proteasome pathway. However, it is now evident that the core 20S proteasome can independently target proteins for degradation. With approximately half of the cellular proteasomes comprising free 20S complexes, this degradation mechanism is not rare. Identifying 20S-specific substrates is challenging due to the dual-targeting of some proteins to either 20S or 26S proteasomes and the non-specificity of proteasome inhibitors...
January 29, 2024: Molecular Systems Biology
https://read.qxmd.com/read/38273161/the-population-context-is-a-driver-of-the-heterogeneous-response-of-epithelial-cells-to-interferons
#23
JOURNAL ARTICLE
Camila Metz-Zumaran, Zina M Uckeley, Patricio Doldan, Francesco Muraca, Yagmur Keser, Pascal Lukas, Benno Kuropka, Leonie Küchenhoff, Soheil Rastgou Talemi, Thomas Höfer, Christian Freund, Elisabetta Ada Cavalcanti-Adam, Frederik Graw, Megan Stanifer, Steeve Boulant
Isogenic cells respond in a heterogeneous manner to interferon. Using a micropatterning approach combined with high-content imaging and spatial analyses, we characterized how the population context (position of a cell with respect to neighboring cells) of epithelial cells affects their response to interferons. We identified that cells at the edge of cellular colonies are more responsive than cells embedded within colonies. We determined that this spatial heterogeneity in interferon response resulted from the polarized basolateral interferon receptor distribution, making cells located in the center of cellular colonies less responsive to ectopic interferon stimulation...
January 25, 2024: Molecular Systems Biology
https://read.qxmd.com/read/38273160/a-ubiquitous-gc-content-signature-underlies-multimodal-mrna-regulation-by-ddx3x
#24
JOURNAL ARTICLE
Ziad Jowhar, Albert Xu, Srivats Venkataramanan, Francesco Dossena, Mariah L Hoye, Debra L Silver, Stephen N Floor, Lorenzo Calviello
The road from transcription to protein synthesis is paved with many obstacles, allowing for several modes of post-transcriptional regulation of gene expression. A fundamental player in mRNA biology is DDX3X, an RNA binding protein that canonically regulates mRNA translation. By monitoring dynamics of mRNA abundance and translation following DDX3X depletion, we observe stabilization of translationally suppressed mRNAs. We use interpretable statistical learning models to uncover GC content in the coding sequence as the major feature underlying RNA stabilization...
January 25, 2024: Molecular Systems Biology
https://read.qxmd.com/read/38238594/machine-learning-inference-of-continuous-single-cell-state-transitions-during-myoblast-differentiation-and-fusion
#25
JOURNAL ARTICLE
Amit Shakarchy, Giulia Zarfati, Adi Hazak, Reut Mealem, Karina Huk, Tamar Ziv, Ori Avinoam, Assaf Zaritsky
Cells modify their internal organization during continuous state transitions, supporting functions from cell division to differentiation. However, tools to measure dynamic physiological states of individual transitioning cells are lacking. We combined live-cell imaging and machine learning to monitor ERK1/2-inhibited primary murine skeletal muscle precursor cells, that transition rapidly and robustly from proliferating myoblasts to post-mitotic myocytes and then fuse, forming multinucleated myotubes. Our models, trained using motility or actin intensity features from single-cell tracking data, effectively tracked real-time continuous differentiation, revealing that differentiation occurs 7...
January 18, 2024: Molecular Systems Biology
https://read.qxmd.com/read/38225383/identifying-spatial-co-occurrence-in-healthy-and-inflamed-tissues-ischia
#26
JOURNAL ARTICLE
Atefeh Lafzi, Costanza Borrelli, Simona Baghai Sain, Karsten Bach, Jonas A Kretz, Kristina Handler, Daniel Regan-Komito, Xenia Ficht, Andreas Frei, Andreas Moor
Sequencing-based spatial transcriptomics (ST) methods allow unbiased capturing of RNA molecules at barcoded spots, charting the distribution and localization of cell types and transcripts across a tissue. While the coarse resolution of these techniques is considered a disadvantage, we argue that the inherent proximity of transcriptomes captured on spots can be leveraged to reconstruct cellular networks. To this end, we developed ISCHIA (Identifying Spatial Co-occurrence in Healthy and InflAmed tissues), a computational framework to analyze the spatial co-occurrence of cell types and transcript species within spots...
January 15, 2024: Molecular Systems Biology
https://read.qxmd.com/read/38225382/systematic-discovery-of-protein-interaction-interfaces-using-alphafold-and-experimental-validation
#27
JOURNAL ARTICLE
Chop Yan Lee, Dalmira Hubrich, Julia K Varga, Christian Schäfer, Mareen Welzel, Eric Schumbera, Milena Djokic, Joelle M Strom, Jonas Schönfeld, Johanna L Geist, Feyza Polat, Toby J Gibson, Claudia Isabelle Keller Valsecchi, Manjeet Kumar, Ora Schueler-Furman, Katja Luck
Structural resolution of protein interactions enables mechanistic and functional studies as well as interpretation of disease variants. However, structural data is still missing for most protein interactions because we lack computational and experimental tools at scale. This is particularly true for interactions mediated by short linear motifs occurring in disordered regions of proteins. We find that AlphaFold-Multimer predicts with high sensitivity but limited specificity structures of domain-motif interactions when using small protein fragments as input...
January 15, 2024: Molecular Systems Biology
https://read.qxmd.com/read/38216754/basal-met-phosphorylation-is-an-indicator-of-hepatocyte-dysregulation-in-liver-disease
#28
JOURNAL ARTICLE
Sebastian Burbano de Lara, Svenja Kemmer, Ina Biermayer, Svenja Feiler, Artyom Vlasov, Lorenza A D'Alessandro, Barbara Helm, Christina Mölders, Yannik Dieter, Ahmed Ghallab, Jan G Hengstler, Christiane Körner, Madlen Matz-Soja, Christina Götz, Georg Damm, Katrin Hoffmann, Daniel Seehofer, Thomas Berg, Marcel Schilling, Jens Timmer, Ursula Klingmüller
Chronic liver diseases are worldwide on the rise. Due to the rapidly increasing incidence, in particular in Western countries, metabolic dysfunction-associated steatotic liver disease (MASLD) is gaining importance as the disease can develop into hepatocellular carcinoma. Lipid accumulation in hepatocytes has been identified as the characteristic structural change in MASLD development, but molecular mechanisms responsible for disease progression remained unresolved. Here, we uncover in primary hepatocytes from a preclinical model fed with a Western diet (WD) an increased basal MET phosphorylation and a strong downregulation of the PI3K-AKT pathway...
January 12, 2024: Molecular Systems Biology
https://read.qxmd.com/read/38182797/derailed-protein-turnover-in-the-aging-mammalian-brain
#29
JOURNAL ARTICLE
Nalini R Rao, Arun Upadhyay, Jeffrey N Savas
Efficient protein turnover is essential for cellular homeostasis and organ function. Loss of proteostasis is a hallmark of aging culminating in severe dysfunction of protein turnover. To investigate protein turnover dynamics as a function of age, we performed continuous in vivo metabolic stable isotope labeling in mice along the aging continuum. First, we discovered that the brain proteome uniquely undergoes dynamic turnover fluctuations during aging compared to heart and liver tissue. Second, trends in protein turnover in the brain proteome during aging showed sex-specific differences that were tightly tied to cellular compartments...
January 5, 2024: Molecular Systems Biology
https://read.qxmd.com/read/38177930/hotspot-propensity-across-mutational-processes
#30
JOURNAL ARTICLE
Claudia Arnedo-Pac, Ferran Muiños, Abel Gonzalez-Perez, Nuria Lopez-Bigas
The sparsity of mutations observed across tumours hinders our ability to study mutation rate variability at nucleotide resolution. To circumvent this, here we investigated the propensity of mutational processes to form mutational hotspots as a readout of their mutation rate variability at single base resolution. Mutational signatures 1 and 17 have the highest hotspot propensity (5-78 times higher than other processes). After accounting for trinucleotide mutational probabilities, sequence composition and mutational heterogeneity at 10 Kbp, most (94-95%) signature 17 hotspots remain unexplained, suggesting a significant role of local genomic features...
January 2024: Molecular Systems Biology
https://read.qxmd.com/read/38177929/illuminating-phenotypic-drug-responses-of-sarcoma-cells-to-kinase-inhibitors-by-phosphoproteomics
#31
JOURNAL ARTICLE
Chien-Yun Lee, Matthew The, Chen Meng, Florian P Bayer, Kerstin Putzker, Julian Müller, Johanna Streubel, Julia Woortman, Amirhossein Sakhteman, Moritz Resch, Annika Schneider, Stephanie Wilhelm, Bernhard Kuster
Kinase inhibitors (KIs) are important cancer drugs but often feature polypharmacology that is molecularly not understood. This disconnect is particularly apparent in cancer entities such as sarcomas for which the oncogenic drivers are often not clear. To investigate more systematically how the cellular proteotypes of sarcoma cells shape their response to molecularly targeted drugs, we profiled the proteomes and phosphoproteomes of 17 sarcoma cell lines and screened the same against 150 cancer drugs. The resulting 2550 phenotypic profiles revealed distinct drug responses and the cellular activity landscapes derived from deep (phospho)proteomes (9-10,000 proteins and 10-27,000 phosphorylation sites per cell line) enabled several lines of analysis...
January 2024: Molecular Systems Biology
https://read.qxmd.com/read/38177928/what-we-can-learn-from-deep-space-communication-for-reproducible-bioimaging-and-data-analysis
#32
JOURNAL ARTICLE
Tatiana Woller, Christopher J Cawthorne, Romain Raymond Agnes Slootmaekers, Ingrid Barcena Roig, Alexander Botzki, Sebastian Munck
No abstract text is available yet for this article.
January 2024: Molecular Systems Biology
https://read.qxmd.com/read/38177382/detection-of-patient-level-distances-from-single-cell-genomics-and-pathomics-data-with-optimal-transport-pilot
#33
JOURNAL ARTICLE
Mehdi Joodaki, Mina Shaigan, Victor Parra, Roman D Bülow, Christoph Kuppe, David L Hölscher, Mingbo Cheng, James S Nagai, Michaël Goedertier, Nassim Bouteldja, Vladimir Tesar, Jonathan Barratt, Ian Sd Roberts, Rosanna Coppo, Rafael Kramann, Peter Boor, Ivan G Costa
Although clinical applications represent the next challenge in single-cell genomics and digital pathology, we still lack computational methods to analyze single-cell or pathomics data to find sample-level trajectories or clusters associated with diseases. This remains challenging as single-cell/pathomics data are multi-scale, i.e., a sample is represented by clusters of cells/structures, and samples cannot be easily compared with each other. Here we propose PatIent Level analysis with Optimal Transport (PILOT)...
December 19, 2023: Molecular Systems Biology
https://read.qxmd.com/read/38031960/integrated-systems-biology-approach-identifies-gene-targets-for-endothelial-dysfunction
#34
JOURNAL ARTICLE
Iguaracy Pinheiro-de-Sousa, Miriam Helena Fonseca-Alaniz, Girolamo Giudice, Iuri Cordeiro Valadão, Silvestre Massimo Modestia, Sarah Viana Mattioli, Ricardo Rosa Junior, Lykourgos-Panagiotis Zalmas, Yun Fang, Evangelia Petsalaki, José Eduardo Krieger
Endothelial dysfunction (ED) is critical in the development and progression of cardiovascular (CV) disorders, yet effective therapeutic targets for ED remain elusive due to limited understanding of its underlying molecular mechanisms. To address this gap, we employed a systems biology approach to identify potential targets for ED. Our study combined multi omics data integration, with siRNA screening, high content imaging and network analysis to prioritise key ED genes and identify a pro- and anti-ED network...
November 30, 2023: Molecular Systems Biology
https://read.qxmd.com/read/37984409/a-multi-layered-network-model-identifies-akt1-as-a-common-modulator-of-neurodegeneration
#35
JOURNAL ARTICLE
Dokyun Na, Do-Hwan Lim, Jae-Sang Hong, Hyang-Mi Lee, Daeahn Cho, Myeong-Sang Yu, Bilal Shaker, Jun Ren, Bomi Lee, Jae Gwang Song, Yuna Oh, Kyungeun Lee, Kwang-Seok Oh, Mi Young Lee, Min-Seok Choi, Han Saem Choi, Yang-Hee Kim, Jennifer M Bui, Kangseok Lee, Hyung Wook Kim, Young Sik Lee, Jörg Gsponer
The accumulation of misfolded and aggregated proteins is a hallmark of neurodegenerative proteinopathies. Although multiple genetic loci have been associated with specific neurodegenerative diseases (NDs), molecular mechanisms that may have a broader relevance for most or all proteinopathies remain poorly resolved. In this study, we developed a multi-layered network expansion (MLnet) model to predict protein modifiers that are common to a group of diseases and, therefore, may have broader pathophysiological relevance for that group...
November 20, 2023: Molecular Systems Biology
https://read.qxmd.com/read/37963083/paralog-dispensability-shapes-homozygous-deletion-patterns-in-tumor-genomes
#36
JOURNAL ARTICLE
Barbara De Kegel, Colm J Ryan
Genomic instability is a hallmark of cancer, resulting in tumor genomes having large numbers of genetic aberrations, including homozygous deletions of protein coding genes. That tumor cells remain viable in the presence of such gene loss suggests high robustness to genetic perturbation. In model organisms and cancer cell lines, paralogs have been shown to contribute substantially to genetic robustness-they are generally more dispensable for growth than singletons. Here, by analyzing copy number profiles of > 10,000 tumors, we test the hypothesis that the increased dispensability of paralogs shapes tumor genome evolution...
November 14, 2023: Molecular Systems Biology
https://read.qxmd.com/read/37916966/phosphatase-specificity-principles-uncovered-by-mrble-dephos-and-global-substrate-identification
#37
JOURNAL ARTICLE
Jamin B Hein, Hieu T Nguyen, Dimitriya H Garvanska, Isha Nasa, Thomas Kruse, Yinnian Feng, Blanca Lopez Mendez, Norman Davey, Arminja N Kettenbach, Polly M Fordyce, Jakob Nilsson
Phosphoprotein phosphatases (PPPs) regulate major signaling pathways, but the determinants of phosphatase specificity are poorly understood. This is because methods to investigate this at scale are lacking. Here, we develop a novel in vitro assay, MRBLE:Dephos, that allows multiplexing of dephosphorylation reactions to determine phosphatase preferences. Using MRBLE:Dephos, we establish amino acid preferences of the residues surrounding the dephosphorylation site for PP1 and PP2A-B55, which reveals common and unique preferences...
November 2, 2023: Molecular Systems Biology
https://read.qxmd.com/read/37888487/evaluating-e-%C3%A2-coli-genome-scale-metabolic-model-accuracy-with-high-throughput-mutant-fitness-data
#38
JOURNAL ARTICLE
David B Bernstein, Batu Akkas, Morgan N Price, Adam P Arkin
The Escherichia coli genome-scale metabolic model (GEM) is an exemplar systems biology model for the simulation of cellular metabolism. Experimental validation of model predictions is essential to pinpoint uncertainty and ensure continued development of accurate models. Here, we quantified the accuracy of four subsequent E. coli GEMs using published mutant fitness data across thousands of genes and 25 different carbon sources. This evaluation demonstrated the utility of the area under a precision-recall curve relative to alternative accuracy metrics...
October 27, 2023: Molecular Systems Biology
https://read.qxmd.com/read/37850520/canalisation-and-plasticity-on-the-developmental-manifold-of-caenorhabditis-elegans
#39
JOURNAL ARTICLE
David J Jordan, Eric A Miska
How do the same mechanisms that faithfully regenerate complex developmental programmes in spite of environmental and genetic perturbations also allow responsiveness to environmental signals, adaptation and genetic evolution? Using the nematode Caenorhabditis elegans as a model, we explore the phenotypic space of growth and development in various genetic and environmental contexts. Our data are growth curves and developmental parameters obtained by automated microscopy. Using these, we show that among the traits that make up the developmental space, correlations within a particular context are predictive of correlations among different contexts...
October 18, 2023: Molecular Systems Biology
https://read.qxmd.com/read/37842805/enablers-and-challenges-of-spatial-omics-a-melting-pot-of-technologies
#40
REVIEW
Theodore Alexandrov, Julio Saez-Rodriguez, Sinem K Saka
Spatial omics has emerged as a rapidly growing and fruitful field with hundreds of publications presenting novel methods for obtaining spatially resolved information for any omics data type on spatial scales ranging from subcellular to organismal. From a technology development perspective, spatial omics is a highly interdisciplinary field that integrates imaging and omics, spatial and molecular analyses, sequencing and mass spectrometry, and image analysis and bioinformatics. The emergence of this field has not only opened a window into spatial biology, but also created multiple novel opportunities, questions, and challenges for method developers...
October 16, 2023: Molecular Systems Biology
journal
journal
40899
2
3
Fetch more papers »
Fetching more papers... Fetching...
Remove bar
Read by QxMD icon Read
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"

We want to hear from doctors like you!

Take a second to answer a survey question.