Journals Journal of Biomedical Material...

Journal of Biomedical Materials Research. Part A
Jennifer Gansau, Emily E McDonnell, Conor T Buckley
During intervertebral disc (IVD) degeneration, microenvironmental challenges such as decreasing levels of glucose, oxygen, and pH play crucial roles in cell survival and matrix turnover. Antacids, such as Mg(OH)2 and CaCO3 , entrapped in microcapsules are capable of neutralizing acidic microenvironments in a controlled fashion and therefore may offer the potential to improve the acidic niche of the degenerated IVD and enhance cell-based regeneration strategies. The objectives of this work were, first, to develop and characterize antacid microcapsules and assess their neutralization capacity in an acidic microenvironment and, second, to combine antacid microcapsules with cellular microcapsules in a hybrid gel system to investigate their neutralization effect as a potential therapeutic in a disc explant model...
May 30, 2024: Journal of Biomedical Materials Research. Part A
Qunfei Zhang, Xiang Liu, Hongqiang Liu, Shufen Li, Zhenping An, Zujian Feng
Peripheral nerve blockade (PNB) is a common treatment to relieve postoperative pain. However, local anesthetics alone have a short duration of action and severe side effects during postoperative analgesia. In order to overcome these limitations, the present study reported an injectable hydrogel with a drug slow-release profile for regional nerve blockade. The injectable hydrogel was prepared by crosslinking with gelatin and NHS-PEG-NHS, which was degradable in the physiological environment and displayed sustainable release of anesthetics locally, thus improving the disadvantage of the high toxicity of local anesthetics...
May 28, 2024: Journal of Biomedical Materials Research. Part A
Nicholas P Ziats, Elizabeth Cosgriff-Hernandez
No abstract text is available yet for this article.
May 26, 2024: Journal of Biomedical Materials Research. Part A
Cristian Balducci, Annj Zamuner, Martina Todesco, Andrea Bagno, Antonella Pasquato, Giovanna Iucci, Federica Bertelà, Chiara Battocchio, Luca Tortora, Luca Sacchetto, Paola Brun, Eriberto Bressan, Monica Dettin
Population aging, reduced economic capacity, and neglecting the treatments for oral pathologies, are the main causal factors for about 3 billion individuals who are suffering from partial/total edentulism or alveolar bone resorption: thus, the demand for dental implants is increasingly growing. To achieve a good prognosis for implant-supported restorations, adequate peri-implant bone volume is mandatory. The Guided Bone Regeneration (GBR) technique is one of the most applied methods for alveolar bone reconstruction and treatment of peri-implant bone deficiencies...
May 23, 2024: Journal of Biomedical Materials Research. Part A
L Sánchez-López, B Chico, Maria Cristina García-Alonso, Rosa M Lozano
In this work, a sequential covalent immobilization of graphene oxide (GO) and hyaluronic acid (HA) is performed to obtain a biocompatible wear-resistant nanocoating on the surface of the biomedical grade cobalt-chrome (CoCr) alloy. Nanocoated CoCr surfaces were characterized by Raman spectroscopy and electrochemical impedance spectroscopy (EIS) in 3 g/L HA electrolyte. Tribocorrosion tests of the nanocoated CoCr surfaces were carried out in a pin on flat tribometer. The biological response of covalently HA/GO biofunctionalized CoCr surfaces with and without wear-corrosion processes was studied through the analysis of the proteome of macrophages...
May 22, 2024: Journal of Biomedical Materials Research. Part A
Dieu Thao Nguyen, Jitendra Pant, Aasma Sapkota, Marcus James Goudie, Priyadarshini Singha, Elizabeth J Brisbois, Hitesh Handa
Wound infection and excessive blood loss are the two major challenges associated with trauma injuries that account for 10% of annual deaths in the United States. Nitric oxide (NO) is a gasotransmitter cell signaling molecule that plays a crucial role in the natural wound healing process due to its antibacterial, anti-inflammatory, cell proliferation, and tissue remodeling abilities. Tranexamic acid (TXA), a prothrombotic agent, has been used topically and systemically to control blood loss in reported cases of epistaxis and combat-related trauma injuries...
May 20, 2024: Journal of Biomedical Materials Research. Part A
Rachel Hatano, Ariell M Smith, Ritu Raman, Jose E Zamora, Rashid Bashir, Kara E McCloskey
Tissue engineering can provide in vitro models for drug testing, disease modeling, and perhaps someday, tissue/organ replacements. For building 3D heart tissue, the alignment of cardiac cells or cardiomyocytes (CMs) is important in generating a synchronously contracting tissue. To that end, researchers have generated several fabrication methods for building heart tissue, but direct comparisons of pros and cons using the same cell source is lacking. Here, we derived cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) and compare the assembly of these cells using three fabrication methods: cardiospheres, muscle rings, and muscle strips...
May 16, 2024: Journal of Biomedical Materials Research. Part A
Kendell M Pawelec, Todd A Schoborg, Erik M Shapiro
Implanted polymeric devices, designed to encourage tissue regeneration, require porosity. However, characterizing porosity, which affects many functional device properties, is non-trivial. Computed tomography (CT) is a quick, versatile, and non-destructive way to gain 3D structural information, yet various CT technologies, such as benchtop, preclinical and clinical systems, all have different capabilities. As system capabilities determine the structural information that can be obtained, seamless monitoring of key device features through all stages of clinical translation must be engineered intentionally...
May 10, 2024: Journal of Biomedical Materials Research. Part A
Naghmeh Abbasi, Helen O'Neill
Cell replacement therapy is under development for dry age-related macular degeneration (AMD). A thin membrane resembling the Bruch's membrane is required to form a cell-on-membrane construct with retinal pigment epithelial (RPE) cells. These cells have been differentiated from human embryonic stem cells (hESCs) in vitro. A carrier membrane is required for cell implantation, which is biocompatible for cell growth and has dimensions and physical properties resembling the Bruch's membrane. Here a nanofiber electrospun poly-L-lactic acid (PLLA) membrane is tested for capacity to support cell growth and maturation...
May 10, 2024: Journal of Biomedical Materials Research. Part A
Jing Han, Lea Andrée, Dongmei Deng, Bart A J A van Oirschot, Adelina S Plachokova, Sander C G Leeuwenburgh, Fang Yang
Tightly sealed peri-implant gingival tissue provides a barrier against oral bacterial invasion, protecting the alveolar bone and maintaining long-term implant survival. To investigate if zinc can enhance the integration between peri-implant gingival tissue and abutment surface, we herein present novel zinc/chitosan/gelatin (Zn/CS/Gel) coatings prepared using the electrophoretic deposition (EPD) technique. The effect of these coatings on human gingival fibroblasts (hGFs) was investigated by culturing these cells on top of the EPD coatings...
May 9, 2024: Journal of Biomedical Materials Research. Part A
Darshan Bhirud, Sankha Bhattacharya, Bhupendra G Prajapati
The worldwide health burden of colorectal cancer is still substantial, and traditional chemotherapeutic drugs sometimes have poor selectivity, which can result in systemic toxicity and unfavorable side effects. For colon-specific medication delivery, bioengineered carbohydrate polymers have shown promise as carriers. They may enhance treatment effectiveness while minimizing systemic exposure and associated side effects. The unique properties of these manufactured or naturally occurring biopolymers, such as hyaluronic acid, chitosan, alginate, and pectin, enable targeted medicine release...
May 9, 2024: Journal of Biomedical Materials Research. Part A
Sheng-Jie Shiue, Ming-Shun Wu, Yi-Hsien Chiang, Hsin-Yi Lin
Bacteriophage (phage) has been reported to reduce the bacterial infection in delayed-healing wounds and, as a result, aiding in the healing of said wounds. In this study we investigated whether the presence of phage itself could help repair delayed-healing wounds in diabetic mice. Three strains of phage that target Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa were used. To prevent the phage liquid from running off the wound, the mixture of phage (phage-cocktail) was encapsulated in a porous hydrogel dressing made with three-dimensional printing...
May 6, 2024: Journal of Biomedical Materials Research. Part A
Xiaoge Li, Chunying Shi, Runxue Zhou, Xinhui Chen, Qingling Xu, Chunyige Zhao, Mengyao Ma, Xiang Ao, Ying Liu
Acute kidney injury (AKI) is a life-threatening disease primarily caused by renal ischemia-reperfusion (I/R) injury, which can result in renal failure. Currently, growth factor therapy is considered a promising and effective approach for AKI treatment. Basic fibroblast growth factor (bFGF), an angiogenic factor with potent activity, efficiently stimulates angiogenesis and facilitates regeneration of renal tissue. However, the unrestricted diffusion of bFGF restricts its clinical application in AKI treatment...
May 3, 2024: Journal of Biomedical Materials Research. Part A
Zhengrong Xie, Liguo Hao, Jinren Liu, Changzhi Guo, Qiushi Jia, Shuang Wu, Fulin Li, Chunxiang Li, Zhongyuan Li
The combination of magnetic resonance and fluorescence imaging in dual-modality imaging not only resolves the limitations of conventional single molecular imaging techniques in terms of specificity, sensitivity, and resolution but also expands the possibilities of molecular imaging techniques in diagnostics and therapeutic monitoring. Herein, a novel pH-responsive magnetic resonance/near-infrared fluorescence (MR/NIRF) nanoprobe (MnO2 @BSA-Cy5.5) was successfully prepared by biomineralizing manganese dioxide (MnO2 ) with bovine serum albumin (BSA) while coupling fluorescent dye Cy5...
May 3, 2024: Journal of Biomedical Materials Research. Part A
Erwan Sauvage, Justin Matta, Cat-Thy Dang, Jiaxin Fan, Graziele Cruzado, Fabio Cicoira, Géraldine Merle
Engineering cardiac implants for treating myocardial infarction (MI) has advanced, but challenges persist in mimicking the structural properties and variability of cardiac tissues using traditional bioconstructs and conventional engineering methods. This study introduces a synthetic patch with a bioactive surface designed to swiftly restore functionality to the damaged myocardium. The patch combines a composite, soft, and conductive hydrogel-based on (3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) and polyvinyl alcohol (PVA)...
April 30, 2024: Journal of Biomedical Materials Research. Part A
Xifeng Liu, Maria D Astudillo Potes, Vitalii Serdiuk, Babak Dashtdar, Areonna C Schreiber, Asghar Rezaei, A Lee Miller, Abdelrahman M Hamouda, Mahnoor Shafi, Benjamin D Elder, Lichun Lu
Degenerative spinal pathology is a widespread medical issue, and spine fusion surgeries are frequently performed. In this study, we fabricated an injectable bioactive click chemistry polymer cement for use in spinal fusion and bone regrowth. Taking advantages of the bioorthogonal click reaction, this cement can be crosslinked by itself eliminating the addition of a toxic initiator or catalyst, nor any external energy sources like UV light or heat. Furthermore, nano-hydroxyapatite (nHA) and microspheres carrying recombinant human bone morphogenetic protein-2 (rhBMP-2) and recombinant human vascular endothelial growth factor (rhVEGF) were used to make the cement bioactive for vascular induction and osteointegration...
April 21, 2024: Journal of Biomedical Materials Research. Part A
Gizem Kerem, Sakip Önder, Abdulhalim Kılıç
The osseointegration of titanium implants within the host tissue holds crucial importance. The introduction of functional coatings at tissue-implant interface enhances the bioactivity of titanium implants, improves their therapeutic outcomes, and enhances the effectiveness of treatments. In this study, we focused on enhancing the bioactivity of titanium-based implant materials by coating the titanium surfaces with chitosan microspheres, which are loaded with osseointegration-promoting agent dexamethasone (DEX)...
April 20, 2024: Journal of Biomedical Materials Research. Part A
Sarah Akua Osafo, Precious Osayamen Etinosa, John David Obayemi, Ali Azeko Salifu, Tabiri Asumadu, Desmond Klenam, Benjamin Agyei-Tuffour, David Dodoo-Arhin, Abu Yaya, Winston Oluwole Soboyejo
Despite the attractive combinations of cell/surface interactions, biocompatibility, and good mechanical properties of Ti-6Al-4V, there is still a need to enhance the early stages of cell/surface integration that are associated with the implantation of biomedical devices into the human body. This paper presents a novel, easy and reproducible method of nanoscale and nanostructured hydroxyapatite (HA) coatings on Ti-6Al-4V. The resulting nanoscale coatings/nanostructures are characterized using a combination of Raman spectroscopy, scanning electron microscopy equipped with energy dispersive x-ray spectroscopy...
April 17, 2024: Journal of Biomedical Materials Research. Part A
Hilda Aguayo-Morales, Luis E Cobos-Puc, Claudia M Lopez-Badillo, Ernesto Oyervides-Muñoz, Gonzalo Ramírez-García, Jesús A Claudio-Rizo
Diabetic foot ulcers are a serious complication of uncontrolled diabetes, emphasizing the need to develop wound healing strategies that are not only effective but also biocompatible, biodegradable, and safe. We aimed to create biomatrices composed of semi-interpenetrated polymer networks of collagen, polyurethane, and dextran, to enhance the wound healing process. The hydrogels were extensively characterized by various analytical techniques, including analysis of their structure, crystallinity, thermal properties, gelation process, reticulation, degradation, cell proliferation, and healing properties, among others...
April 15, 2024: Journal of Biomedical Materials Research. Part A
Linn Anna Fiehn, Elke Kunisch, Merve Saur, Marcela Arango-Ospina, Christian Merle, Sébastien Hagmann, Adrian Stiller, Leena Hupa, Hana Kaňková, Dagmar Galusková, Tobias Renkawitz, Aldo R Boccaccini, Fabian Westhauser
The 0106-B1-bioactive glass (BG) composition (in wt %: 37.5 SiO2 , 22.6 CaO, 5.9 Na2 O, 4.0 P2 O5 , 12.0 K2 O, 5.5 MgO, and 12.5 B2 O3 ) has demonstrated favorable processing properties and promising bone regeneration potential. The present study aimed to evaluate the biological effects of the incorporation of highly pro-angiogenic copper (Cu) in 0106-B1-BG in vitro using human bone marrow-derived mesenchymal stromal cells (BMSCs) as well as its in vivo potential for bone regeneration. CuO was added to 0106-B1-BG in exchange for CaO, resulting in Cu-doped BG compositions containing 1...
April 15, 2024: Journal of Biomedical Materials Research. Part A
Fetch more papers »
Fetching more papers... Fetching...
Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"

We want to hear from doctors like you!

Take a second to answer a survey question.