Read by QxMD icon Read

Sensors and Actuators. B, Chemical

Benjamin Coleman, Chad Coarsey, Md Alamgir Kabir, Waseem Asghar
Point-of-care (POC) tests often rely on smartphone image methods for colorimetric analysis, but the results of such methods are frequently difficult to reproduce or standardize. The problem is aggravated by unpredictable image capture conditions, which pose a significant challenge when low limits of detection (LOD) are needed. Application-specific smartphone attachments are often used to standardize imaging conditions, but there has recently been an interest in equipment-free POC colorimetric analysis. Improved output metrics and preprocessing methods have been developed, but equipment-free imaging often has a high LOD and is inappropriate for quantitative tasks...
March 1, 2019: Sensors and Actuators. B, Chemical
Hongmei Cao, Xin Zhou, Yong Zeng
There is an urgent need of sensitive bioanalytical platforms for sensitive and precise quantification of low-abundance microRNA targets in complex biological samples, including liquid biopsies of tumors. Many of current miRNA biosensing methods require laborious sample pretreatment procedures, including extraction of total RNA, which largely limits their biomedical and clinical applications. Herein we developed an integrated Microfluidic Exponential Rolling Circle Amplification (MERCA) platform for sensitive and specific detection of microRNAs directly in minimally processed samples...
January 15, 2019: Sensors and Actuators. B, Chemical
Alexandra Dudina, Florent Seichepine, Yihui Chen, Alexander Stettler, Andreas Hierlemann, Urs Frey
We present the design and characterization of a monolithic complementary metal-oxide-semiconductor (CMOS) biosensor platform comprising of a switch-matrix-based array of 9'216 carbon nanotube field-effect transistors (CNTFETs) and associated readout circuitry. The switch-matrix allows for flexible selection and simultaneous routing of 96 sensor elements to the corresponding readout channels. A low-noise, wide-bandwidth, wide-dynamic-range transimpedance continuous-time amplifier architecture has been implemented to facilitate resistance measurements in the range between 50 kΩ and 1 GΩ at a bandwidth of up to 1 MHz...
January 15, 2019: Sensors and Actuators. B, Chemical
Ali Rohani, John H Moore, Yi-Hsuan Su, Victoria Stagnaro, Cirle Warren, Nathan S Swami
Current methods for measurement of antibiotic susceptibility of pathogenic bacteria are highly reliant on microbial culture, which is time consuming (requires > 16 hours), especially at near minimum inhibitory concentration (MIC) levels of the antibiotic. We present the use of single-cell electrophysiology-based microbiological analysis for rapid phenotypic identification of antibiotic susceptibility at near-MIC levels, without the need for microbial culture. Clostridium difficile ( C. difficile ) is the single most common cause of antibiotic-induced enteric infection and disease recurrence is common after antibiotic treatments to suppress the pathogen...
December 10, 2018: Sensors and Actuators. B, Chemical
Shuai Xia, Jianbo Wang, Jianheng Bi, Xiao Wang, Mingxi Fang, Tyler Phillips, Aslan May, Nathan Conner, Marina Tanasova, Fen-Tair Luo, Haiying Liu
We report two ratiometric fluorescent probes based on π-conjugation modulation between coumarin and hemicyanine moieties for sensitive ratiometric detection of pH alterations in live cells by monitoring visible and near-infrared fluorescence changes. In a π-conjugation modulation strategy, a coumarin dye was conjugated to a near-infrared hemicyanine dye via a vinyl connection while lysosome-targeting morpholine ligand and o-phenylenediamine residue were introduced to the hemicyanine dye to form closed spirolactam ring structures in probes A and B , respectively...
July 15, 2018: Sensors and Actuators. B, Chemical
Wanli Zheng, Li Yao, Jun Teng, Chao Yan, Panzhu Qin, Guodong Liu, Wei Chen
The authors describe a rapid and low-cost approach for multiplex microRNA(miRNA) assay on lateral flow nucleic acid biosensor (LFNAB). The principle of assay is based on sandwich-type nucleic acid hybridization reactions to produce gold nanoparticle (GNP)-attached complexes (ssDNA-microRNA-ssDNA/GNPs), which are captured and visualized on the test zone of LFNAB. By designing three different test zones on LFNAB, simultaneous detection of microRNA-21, microRNA-155 and microRNA-210 was achieved with an adding-measuring model by using GNP as visual tag...
July 1, 2018: Sensors and Actuators. B, Chemical
Xianming Kong, Xinyuan Chong, Kenny Squire, Alan X Wang
The escalating research interests in porous media microfluidics, such as microfluidic paper-based analytical devices, have fostered a new spectrum of biomedical devices for point-of-care (POC) diagnosis and biosensing. In this paper, we report microfluidic diatomite analytical devices (μDADs), which consist of highly porous photonic crystal biosilica channels, as an innovative lab-on-a-chip platform to detect illicit drugs. The μDADs in this work are fabricated by spin-coating and tape-stripping diatomaceous earth on regular glass slides with cross section of 400×30µm2 ...
April 15, 2018: Sensors and Actuators. B, Chemical
Jia Liu, Yuhao Qiang, Ofelia Alvarez, E Du
Polymerization of intracellular sickle hemoglobin induced by low oxygen tension has been recognized as a primary determinant of the pathophysiologic manifestations in sickle cell disease. Existing flow cytometry techniques for detection of sickle cells are typically based on fluorescence markers or cellular morphological analysis. Using microfluidics and electrical impedance spectroscopy, we develop a new, label-free flow cytometry for non-invasive measurement of single cells under controlled oxygen level. We demonstrate the capability of this new technique by determining the electrical impedance differential of normal red blood cells obtained from a healthy donor and sickle cells obtained from three sickle cell patients, under normoxic and hypoxic conditions and at three different electrical frequencies, 156 kHz, 500 kHz and 3 MHz...
February 2018: Sensors and Actuators. B, Chemical
Hao Wan, Heyu Yin, Lu Lin, Xiangqun Zeng, Andrew J Mason
The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate...
February 2018: Sensors and Actuators. B, Chemical
Yong Shin Kim, Yuanyuan Yang, Charles S Henry
Numerous fabrication methods have been reported for microfluidic paper-based analytical devices (μPADs) using barrier materials ranging from photoresist to wax. While these methods have been used with wide success, consistently producing small, high-resolution features using materials and methods that are compatible with solvents and surfactants remains a challenge. Two new methods are presented here for generating μPADs with well-defined, high-resolution structures compatible with solvents and surfactant-containing solutions by partially or fully fusing paper with Parafilm® followed by cutting with a CO2 laser cutter...
February 2018: Sensors and Actuators. B, Chemical
Tae Yoon Lee, Kyudong Han, Dwhyte O Barrett, Sunggook Park, Steven A Soper, Michael C Murphy
A method for the design, construction, and assembly of modular, polymer-based, microfluidic devices using simple micro-assembly technology was demonstrated to build an integrated fluidic system consisting of vertically stacked modules for carrying out multi-step molecular assays. As an example of the utility of the modular system, point mutation detection using the ligase detection reaction (LDR) following amplification by the polymerase chain reaction (PCR) was carried out. Fluid interconnects and standoffs ensured that temperatures in the vertically stacked reactors were within ± 0...
January 2018: Sensors and Actuators. B, Chemical
M S Wiederoder, E L Kendall, J-H Han, R G Ulrich, D L DeVoe
A sensitive and rapid absorbance based immunosensor that utilizes ex situ functionalized porous silica monoliths as volumetric optical detection elements is demonstrated in this study. The porous monolith structure facilitates high capture probe density and short diffusion length scales, enabling sensitive and rapid assays. Silica monoliths, synthesized and functionalized with immunocapture probes off-chip before integration into a sealed thermoplastic microfluidic device, serve to capture target antigens during perfusion through the porous structure...
January 2018: Sensors and Actuators. B, Chemical
Gayan Premaratne, Zainab H Al Mubarak, Lakmini Senavirathna, Lin Liu, Sadagopan Krishnan
Circulating serum nucleotide biomarkers are useful indicators for early diagnosis of cancer, respiratory illnesses, and other deadly diseases. In this work, we compared detection performances of a quartz crystal microbalance (QCM), which is a mass sensor, with that of a surface plasmon resonance (SPR) microarray for an oligonucleotide mimic of a microRNA-21 biomarker. A surface immobilized capture oligonucleotide probe was used to hybridize with the target oligonucleotide (i.e., the microRNA-21 mimic) to facilitate selective detection...
December 2017: Sensors and Actuators. B, Chemical
Daniel A Smith, Lucy J Newbury, Guido Drago, Timothy Bowen, James E Redman
Altered serum and plasma microRNA (miRNA) expression profiles have been observed in numerous human diseases, with a number of studies describing circulating miRNA biomarkers for cancer diagnosis, prognosis and response to treatment, and recruitment to clinical trials for miRNA-based drug therapy already underway. Electrochemical detection of biomarkers in urine has several significant advantages over circulating biomarker analysis including safety, cost, speed and ease of conversion to the point of care environment...
December 2017: Sensors and Actuators. B, Chemical
Yuhong Tian, Ke Qu, Xiangqun Zeng
It has been demonstrated in this study that the substituents on the monomer aniline benzene ring are able to introduce the significant differences to the resulting polyaniline's collective properties. We systematically evaluated the structural perturbation effects of two substituents (methyl and methoxy) of aniline monomer through the electrochemical method. Our results showed that the methoxy group induces the less structural perturbation than the methyl counterpart, because of its partial double bond restriction...
October 2017: Sensors and Actuators. B, Chemical
Zhiguo Zhao, Hongen Tu, Eric Gr Kim, Bonnie F Sloane, Yong Xu
In the effort of developing micro-electrochemical sensors, the miniaturization of reference electrodes has been a challenging task. In this paper, a flexible micro reference electrode with an internal electrolyte reservoir is reported. This new device is based on a unique microfabricated parylene tube structure, which is filled with Cl- rich electrolyte, into which a 50 μm diameter silver (Ag) wire covered with a 7.4 μm thick silver chloride (AgCl) layer is inserted. The distal end of the tube is filled with potassium chloride (KCl) saturated agarose gel...
August 2017: Sensors and Actuators. B, Chemical
Zeta Tak For Yu, Jophin George Joseph, Shirley Xiaosu Liu, Mei Ki Cheung, Parker James Haffey, Katsuo Kurabayashi, Jianping Fu
Sorting and enumeration of immune cells from blood are critical operations involved in many clinical applications. Conventional methods for sorting and counting immune cells from blood, such as flow cytometry and hemocytometers, are tedious, inaccurate, and difficult for implementation for point-of-care (POC) testing. Herein we developed a microscale centrifugal technology termed Centrifugal Microfluidic Chip (CMC) capable of sorting immune cells from blood and in situ cellular analysis in a laboratory setting...
June 2017: Sensors and Actuators. B, Chemical
Grzegorz Pasternak, John Greenman, Ioannis Ieropoulos
Standard Biological Oxygen Demand (BOD) analysis requires 5 days to complete. To date, microbial fuel cell biosensors used as an alternative method for BOD assessment requires external apparatus, which limits their use for on-line monitoring in remote, off-grid locations. In this study, a self-powered, floating biosensor was developed for online water quality monitoring. This approach eliminated the need for external apparatus and maintenance that would otherwise be required by other techniques. The biosensor was able to detect urine in freshwater and turn ON a visual and sound cues (85 dB)...
June 2017: Sensors and Actuators. B, Chemical
Michael M Baksh, M G Finn
Backscattering interferometry (BSI) was used to determine the association constants for four well-known biomolecular interactions: protein A + IgG, trypsin + antitrypsin, trypsin + p -aminobenzamidine, and antithrombin + heparin. Each gave well-defined binding curves and Kd values in close agreement with published findings obtained using other techniques. These results stand in direct contrast to the claims in a 2015 publication in this journal (Discussion of "Back Scattering Interferometry revisited-a theoretical and experimental investigation" Jørgensen, T...
May 2017: Sensors and Actuators. B, Chemical
Hao Wan, Heyu Yin, Andrew J Mason
Intense study on gas sensors has been conducted to implement fast gas sensing with high sensitivity, reliability and long lifetime. This paper presents a rapid amperometric method for gas sensing based on a room temperature ionic liquid electrochemical gas sensor. To implement a miniaturized sensor with a fast response time, a three electrode system with gold interdigitated electrodes was fabricated by photolithography on a porous polytetrafluoroethylene substrate that greatly enhances gas diffusion. Furthermore, based on the reversible reaction of oxygen, a new transient double potential amperometry (DPA) was explored for electrochemical analysis to decrease the measurement time and reverse reaction by-products that could cause current drift...
April 2017: Sensors and Actuators. B, Chemical
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"