Journals Journal of Molecular Neuroscie...

Journal of Molecular Neuroscience : MN
Tianqi Jiang, Aitao Wang, Guangyu Wen, Hao Qi, Yuntao Gu, Wenhai Tang, Chunzhao Xu, Shanwu Ren, Shunli Zhang, Shengxing Liu, Yongxiong He
Our former studies have identified the alleviating effect of Calycosin (CA) on spinal cord injury (SCI). In this study, our purpose is to explore the influence of CA on SCI from the perspective of promoting axon growth. The SCI animal model was constructed by spinal cord compression, wherein rat primary cortex neuronal isolation was performed, and the axonal growth restriction cell model was established via chondroitin sulfate proteoglycan (CSPG) treatment. The expressions of axon regeneration markers were measured via immunofluorescent staining and western blot, and the direct target of CA was examined using silver staining...
June 21, 2024: Journal of Molecular Neuroscience: MN
Sasa Wang, Xinlei Zhang, Yuru Zhao, Haoxuan Lv, Pengyu Li, Zhihao Zhang, Xiaomeng Qiao
Binge drinking causes a range of problems especially damage to the nervous system, and the specific neural mechanism of brain loss and behavioral abnormalities caused by which is still unclear. Extracellular regulated protein kinases (ERK) maintain neuronal survival, growth, and regulation of synaptic plasticity by phosphorylating specific transcription factors to regulate expression of brain-derived neurotrophic factor (BDNF). Dual-specific phosphatase 1 (DUSP1) and DUSP6 dephosphorylate tyrosine and serine/threonine residues in ERK1/2 to inactivate them...
June 18, 2024: Journal of Molecular Neuroscience: MN
Nesma M Elaraby, Hoda A Ahmed, Neveen A Ashaat, Sameh Tawfik, Mahmoud K H Ahmed, Nehal F Hassib, Engy A Ashaat
No abstract text is available yet for this article.
June 1, 2024: Journal of Molecular Neuroscience: MN
Konstanze Zieger, Carolina Cao, Jürgen Engele
Upon injury to the CNS, astrocytes undergo morphological and functional changes commonly referred to as astrocyte reactivity. Notably, these reactive processes include altered expression of factors that control immune processes and neuronal survival, as well as increased expression of the CXCL12 receptor, CXCR7/ACKR3. We now asked whether these events are related in that the astrocytic CXCL12 system modulates immune responses and/or neuronal survival. Short-term exposure of astrocytes cultured from the postnatal rat cortex to CXCL12 prominently increased the expression of serpine1/PAI1 on the mRNA level, but showed either no or only minor effects on the expression of additional reactive genes, selected from previous array studies...
May 28, 2024: Journal of Molecular Neuroscience: MN
Hanjie Liu, Hui Yang, Maochun You, Siyu Zhang, Sihan Huang, Xin Tan, Qi Liu, Cen Jiang, Lushuang Xie
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that presents a significant global health challenge. To explore drugs targeting key genes in AD, R software was used to analyze the data of single nuclei transcriptome from human cerebral frontal cortex in AD, and the differentially expressed genes (DEGs) were screened. Then the gene ontology (GO) analysis, Kyoto gene and genome encyclopedia (KEGG) pathway enrichment and protein-protein interaction (PPI) network were analyzed. The hub genes were calculated by Cytoscape software...
May 27, 2024: Journal of Molecular Neuroscience: MN
Yue Sun, Mengni Jiang, Xiang Long, Yongzhen Miao, Huanhuan Du, Ting Zhang, Xuejun Ma, Yue Zhang, Hongrui Meng
The dysregulation of lipid metabolism has been strongly associated with Alzheimer's disease (AD) and has intricate connections with various aspects of disease progression, such as amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. Here, a comprehensive bioinformatic assessment was conducted on lipid metabolism genes in the brains and peripheral blood of AD-derived transcriptome datasets, characterizing the correlation between differentially expressed genes (DEGs) of lipid metabolism and disease pathologies, as well as immune cell preferences...
May 22, 2024: Journal of Molecular Neuroscience: MN
Enrico Souza de Godoy, João Ricardo Mendes de Oliveira
This article discusses a rare case of coexistent meningiomas and Primary familial brain calcification (PFBC). PFBC is a neurodegenerative disease characterized by brain calcifications and a variety of neuropsychiatric symptoms and signs, with pathogenic variants in specific genes. The study explores the potential link between PFBC and meningiomas, highlighting shared features like intralesional calcifications and common genes such as MEA6. The article also revisits PFBC patients developing other brain tumors, particularly gliomas, emphasizing the intersection of oncogenes like PDGFB and PDGFRB in both calcifications and tumor progression...
May 17, 2024: Journal of Molecular Neuroscience: MN
Clara Voelz, Lena E M Schaack, Vanessa Kogel, Cordian Beyer, Jochen Seitz, Stefanie Trinh
Previous studies have demonstrated a brain volume decrease linked to long-term starvation in patients with anorexia nervosa (AN). Food intake is critically diminished in this disorder, leading to one of the highest mortality rates within the psychiatric disease spectrum. As reported in animal models, astrocytes seem to be the most affected cell type in AN. In a recently established primary cell culture model, an elevated unfolded protein response (UPR) was observed in long-term glucose semi-starved astrocytes...
May 16, 2024: Journal of Molecular Neuroscience: MN
Huangde Fu, Shengtian Wu, Hechun Shen, Kai Luo, Zhongxiang Huang, Nankun Lu, Yaolin Li, Qian Lan, Yishun Xian
Treatment of glioblastoma multiforme (GBM) remains challenging. Unraveling the orchestration of glutamine metabolism may provide a novel viewpoint on GBM therapy. The study presented a full and comprehensive comprehending of the glutamine metabolism atlas and heterogeneity in GBM for facilitating the development of a more effective therapeutic choice. Transcriptome data from large GBM cohorts were integrated in this study. A glutamine metabolism-based classification was established through consensus clustering approach, and a classifier by LASSO analysis was defined for differentiating the classification...
May 10, 2024: Journal of Molecular Neuroscience: MN
Elif Kubat Oktem
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia. Programmed cell death (PCD) is mainly characterized by unique morphological features and energy-dependent biochemical processes. The predominant pathway leading to cell death in AD has not been thoroughly analyzed, although there is evidence of neuron loss in AD and numerous pathways of PCD have been associated with this process. A better understanding of the systems biology underlying the relationship between AD and PCD could lead to the development of new therapeutic approaches...
May 3, 2024: Journal of Molecular Neuroscience: MN
Anowarul Islam, Zeeshan Shaukat, Rashid Hussain, Michael G Ricos, Leanne M Dibbens, Stephen L Gregory
Aneuploidy, having an aberrant genome, is gaining increasing attention in neurodegenerative diseases. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. A growing body of research from numerous laboratories suggests that many neurodegenerative disorders, especially Alzheimer's disease and frontotemporal dementia, are characterised by neuronal aneuploidy and the ensuing apoptosis, which may contribute to neuronal loss...
May 2, 2024: Journal of Molecular Neuroscience: MN
Vincent Fong, Babunageswararao Kanuri, Owen Traubert, Min Lui, Shailendra B Patel
The pathogenesis of Alzheimer's disease (AD) is complex and involves an imbalance between production and clearance of amyloid-ß peptides (Aß), resulting in accumulation of Aß in senile plaques. Hypercholesterolemia is a major risk factor for developing AD, with cholesterol shown to accumulate in senile plaques and increase production of Aß. ABCG4 is a member of the ATP-binding cassette transporters predominantly expressed in the CNS and has been suggested to play a role in cholesterol and Aß efflux from the brain...
April 26, 2024: Journal of Molecular Neuroscience: MN
Xi-Lin Yang, Zheng Zeng, Chen Wang, Yun-Long Sheng, Guang-Yu Wang, Fu-Quan Zhang, Xin Lian
We aimed to develop and validate a predictive model for identifying long-term survivors (LTS) among glioblastoma (GB) patients, defined as those with an overall survival (OS) of more than 3 years. A total of 293 GB patients from CGGA and 169 from TCGA database were assigned to training and validation cohort, respectively. The differences in expression of immune checkpoint genes (ICGs) and immune infiltration landscape were compared between LTS and short time survivor (STS) (OS<1.5 years). The differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA) were used to identify the genes differentially expressed between LTS and STS...
April 25, 2024: Journal of Molecular Neuroscience: MN
Gustavo Lovatto Michaelsen, Lívia Dos Reis Edinger da Silva, Douglas Silva de Lima, Mariane da Cunha Jaeger, André Tesainer Brunetto, Rodrigo Juliani Siqueira Dalmolin, Marialva Sinigaglia
Medulloblastoma (MB) is one of the most common pediatric brain tumors and it is estimated that one-third of patients will not achieve long-term survival. Conventional prognostic parameters have limited and unreliable correlations with MB outcome, presenting a major challenge for patients' clinical improvement. Acknowledging this issue, our aim was to build a gene signature and evaluate its potential as a new prognostic model for patients with the disease. In this study, we used six datasets totaling 1679 samples including RNA gene expression and DNA methylation data from primary MB as well as control samples from healthy cerebellum...
April 25, 2024: Journal of Molecular Neuroscience: MN
Hala M Zeidan, Neveen Hassan Nashaat, Maha Hemimi, Adel F Hashish, Amal Elsaeid, Nagwa Abd El-Ghaffar, Suzette I Helal, Nagwa A Meguid
ADHD has huge knowledge gaps concerning its etiology. MicroRNAs (miRNAs) provide promising diagnostic biomarkers of human pathophysiology and may be a novel therapeutic option. The aim was to investigate the levels of miR-34c-3p, miR-155, miR-138-1, miR-296-5p, and plasma brain-derived neurotrophic factor (BDNF) in a group of children with ADHD compared to neurotypicals and to explore correlations between these measures and some clinical data. The participants were children with ADHD in Group I (N = 41; age: 8...
April 23, 2024: Journal of Molecular Neuroscience: MN
Felicia Jennysdotter Olofsgård, Caroline Ran, Yuyan Qin, Carmen Fourier, Elisabet Waldenlind, Anna Steinberg, Christina Sjöstrand, Andrea Carmine Belin
Up to 25% of individuals who live with cluster headache (CH), an extremely painful primary headache disorder, do not adequately respond to the first-line treatment, triptans. Studies have indicated that genetic variants can play a role in treatment response. Likewise, differences in clinical characteristics can give clues to mechanisms underlying triptan non-response. Our aim was to investigate five genetic variants previously implicated in triptan response and their relation to triptan usage in our Swedish CH cohort and to investigate potential distinctions in clinical characteristics...
April 18, 2024: Journal of Molecular Neuroscience: MN
Yendubé T Kantati, Magloire K Kodjo, Benjamin Lefranc, Magali Basille-Dugay, Sébastien Hupin, Isabelle Schmitz, Jérôme Leprince, Messanvi Gbeassor, David Vaudry
Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2 O2 ) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress...
April 17, 2024: Journal of Molecular Neuroscience: MN
Kun Tu, Wenhui Zhou, Shubing Kong
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder. Its etiology may be associated with genetic, environmental, and lifestyle factors. With the advancement of technology, the integration of genomics, transcriptomics, and imaging data related to AD allows simultaneous exploration of molecular information at different levels and their interaction within the organism. This paper proposes a hypergraph-regularized joint deep semi-non-negative matrix factorization (HR-JDSNMF) algorithm to integrate positron emission tomography (PET), single-nucleotide polymorphism (SNP), and gene expression data for AD...
April 15, 2024: Journal of Molecular Neuroscience: MN
Yufei Hu, Zijun Zhao, Fang Xu, Xiaoqin Ren, Menglin Liu, Zilei Zheng, Qiujun Wang
Alzheimer's disease (AD) is a severe neurological illness that causes memory loss and is a global problem. The calcium hypothesis recently steadily evolved in AD. The prospective targets for calcium homeostasis therapy, however, are limited, and gene expression-level research connected to calcium homeostasis in AD remains hazy. In this study, we analyzed the microarray dataset (GSE132903) taken from the Gene Expression Omnibus (GEO) database to investigate calcium homeostasis-related genes for AD. Using immunoblot analysis, we examined the association of ITPKB with inflammation in AD...
April 13, 2024: Journal of Molecular Neuroscience: MN
Douglas E Brenneman, William A Kinney, Mark E McDonnell, Michael J Ippolito, Sara Jane Ward
KLS-13019 was reported previously to reverse paclitaxel-induced mechanical allodynia in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). Recent studies demonstrated that paclitaxel-induced increases in inflammatory markers (GPR55, NLRP3, and IL-1β) of dorsal root ganglion (DRG) cultures were shown to be reversed by KLS-13019 treatment. The mechanism of action for KLS-13019-mediated reversal of paclitaxel-induced neuroinflammation now has been explored using GPR55 siRNA. Pre-treatment of DRG cultures with GPR55 siRNA produced a 21% decrease of immunoreactive (IR) area for GPR55 in cell bodies and a 59% decrease in neuritic IR area, as determined by high-content imaging...
April 11, 2024: Journal of Molecular Neuroscience: MN
Fetch more papers »
Fetching more papers... Fetching...
Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"

We want to hear from doctors like you!

Take a second to answer a survey question.