Read by QxMD icon Read

Applied Biochemistry and Biotechnology

Lorena Caixeta de Oliveira Simões, Ronivaldo Rodrigues da Silva, Carlos Eduardo de Oliveira Nascimento, Maurício Boscolo, Eleni Gomes, Roberto da Silva
Xylanases are enzymes that act in the depolymerization of xylan and that can be used in the food industry, the paper industry, and for bioenergy, among other uses. In this context, particular emphasis is devoted to xylooligosaccharides (XOS) that act as prebiotics, which, under the action of probiotic microorganisms, are capable of positively modifying the intestinal microbiota. In this sense, searching for microbial xylanases stands out as a sustainable strategy for the production of prebiotics. To date, there have been no reports in the literature regarding the purification of native xylanase from Myceliophthora heterothallica F...
February 14, 2019: Applied Biochemistry and Biotechnology
Trung Hau Nguyen, In Yung Sunwoo, Gwi-Taek Jeong, Sung-Koo Kim
In this study, bioethanol was produced from the seaweed Gelidium amansii as biomass through separate hydrolysis and fermentation (SHF) processes. The SHF processes examined in this study include thermal acid hydrolysis pretreatment, enzymatic saccharification, detoxification, and fermentation. Thermal acid hydrolysis pretreatment was conducted using H2 SO4 , with a slurry content of 8-16% and treatment time of 15-75 min. The optimal conditions for thermal acid hydrolysis pretreatment were 12% (w/v) seaweed slurry content and 180 mM H2 SO4 at 121 °C for 45 min, at which 26...
February 14, 2019: Applied Biochemistry and Biotechnology
Ayşe Sezim Şafak, Ezgi Avşar Abdik, Hüseyin Abdik, Pakize Neslihan Taşlı, Fikrettin Şahin
The aim of this study was to investigate the effect of medium harvested from septal cartilage cells on chondrogenic differentiation of adipose stem cells (hASCs) and to compare/contrast its properties to those of a commonly used standard medium formulation in terms of induction and maintenance of chondrogenic hASCs. Differentiation was carried out under three different conditions: septal cartilage medium-SCM, chondrogenic differentiation medium-CM, and 50:50 mixture of CM/SCM. Mesenchymal stem cells (MSCs) markers were determined by flow cytometry...
February 11, 2019: Applied Biochemistry and Biotechnology
Lili Jiang, Daoyu Chen, Zhen Wang, Zhongmin Zhang, Yangliu Xia, Hongyu Xue, Yong Liu
Cardiac tissue engineering is of great importance for therapeutic and pharmaceutical applications. The scaffolds that can provide electrical conductivity and structural organization will be highly beneficial for cardiac tissue engineering. Here, we developed conductive scaffolds with electrical conductivity and porous structure composed of chitosan (CS) blending with graphene oxide (GO) for cardiac tissue engineering. Our results showed that the swelling, porosity, and conductive properties of GO/CS scaffolds could be modulated via adjusting the ratio of GO to CS...
February 11, 2019: Applied Biochemistry and Biotechnology
Huanhong Wang, Yi Qin, Baocai Li, Cheng Xiang, Weifeng Dai, Shiyun Jiao, Mi Zhang
The montan resin (MR) is a solid waste produced during the industrial process of refined montan wax from lignite, and usually disposed by landfill and incineration, which easily cause environmental pollution and resource waste. Based its physicochemical properties, our study attempted to modify MR by Bacillus benzoevorans to achieve ecological utilization of MR. As results, the weight loss rate of MR, expressed as modification degree, was found to increase with the increase of B. benzoevorans-incubated time...
February 11, 2019: Applied Biochemistry and Biotechnology
Sumra Shahid, Faizan Ahmad, Md Imtaiyaz Hassan, Asimul Islam
The folding and unfolding of proteins inside a cell take place in the presence of macromolecules of various shapes and sizes. Such crowded conditions can significantly affect folding, stability, and biophysical properties of proteins. Thus, to logically mimic the intracellular environment, the thermodynamic stability of two different proteins (lysozyme and α-lactalbumin) was investigated in the presence of mixtures of three crowding agents (ficoll 70, dextran 70, and dextran 40) at different pH values. These crowders possess different shapes and sizes...
February 9, 2019: Applied Biochemistry and Biotechnology
Daniela V Rosset, João H C Wancura, Gustavo A Ugalde, J Vladimir Oliveira, Marcus V Tres, Raquel C Kuhn, Sérgio L Jahn
The performance of lipase NS 40116, a novel and promising soluble enzyme obtained from modified Thermomyces lanuginosus microorganism, was investigated in the production of biodiesel (fatty acid methyl esters-FAME) by hydroesterification. In order to investigate the potential of the biocatalyst in its soluble form, this work reports the effect of water content and enzyme load, as well as the recovery and reuse of the biocatalyst. A FAME yield of 94.30% after 12 h was achieved at 35 °C by combining 0.50 wt% of lipase, 15 wt% of water, and a methanol:oil molar ratio of 4...
February 7, 2019: Applied Biochemistry and Biotechnology
Shazia Anwer Bukhari, Nabila Farah, Ghulam Mustafa, Saqib Mahmood, Syed Ali Raza Naqvi
The need for some economic strategies for increased growth and nutraceuticals of medicinal plants is well acknowledged now. It was hypothesized that external magnetic field treatment (MFT) of seeds affecting internal magnet of cells may affect growth and metabolism. In this study, seeds were subjected to pre-sowing magnetic field (50 mT at 5 mm for 5 s). At vegetative stage, the leaf growth, chlorophyll content, catalase (CAT), peroxidase (POD), amino acids, proteins, flavonoids, soluble sugars, total soluble phenolics, carotenoids, anthocyanins, phenolic profile (HPLC based), and antimicrobial activity of leaves (in terms of the minimum inhibitory concentration against Staphylococcus aureus and Pseudomonas aeruginosa) were studied...
February 7, 2019: Applied Biochemistry and Biotechnology
Da-Ming Wang, Lei Sun, Wen-Jing Sun, Feng-Jie Cui, Jin-Song Gong, Xiao-Mei Zhang, Jin-Song Shi, Zheng-Hong Xu
The membrane-bound gluconate dehydrogenase (mGADH) is a critical enzyme for 2-keto-D-gluconic acid (2KGA) production in Pseudomonas plecoglossicida JUIM01. The purified native flavin adenine dinucleotide-dependent mGADH (FAD-mGADH) was consisted of a gamma subunit, a flavoprotein subunit, and a cytochrome c subunit with molecular mass of ~ 27, 65, and 47 kDa, respectively. The specific activity of FAD-mGADH was determined as 90.71 U/mg at optimum pH and temperature of 6.0 and 35 °C. The Km and Vmax values of calcium D-gluconate were 0...
February 7, 2019: Applied Biochemistry and Biotechnology
Per G Erlandsson, Eva Åström, Peter Påhlsson, Nathaniel D Robinson
We compare three different methods to quantify the monosaccharide fucose in solutions using the displacement of a large glycoprotein, lactoferrin. Two microfluidic analysis methods, namely fluorescence detection of (labeled) lactoferrin as it is displaced by unlabeled fucose and the displacement of (unlabeled) lactoferrin in SPR, provide fast responses and continuous data during the experiment, theoretically providing significant information regarding the interaction kinetics between the saccharide groups and binding sites...
February 2, 2019: Applied Biochemistry and Biotechnology
Shan Liu, Perova Elvira, Yongkang Wang, Wei Wang
The growth performance of Chlorella protothecoides, Chlorella pyrenoidosa, and Chlorella sp. in autotrophic cultivation with 10% carbon dioxide (CO2 ) was evaluated. The biomass production of C. protothecoides, along with its carbon, nitrogen (N), and phosphorus (P) utilization, in batch and semicontinuous autotrophic cultivation with 20% CO2 was also determined. Among the three algae species, C. protothecoides obtained the highest biomass yield (1.08 g/L) and P assimilation (99.4%). Compared with the CO2 flow rate and inoculation ratio in batch cultivation, light intensity considerably improved biomass yield, N and P assimilation, and CO2 utilization...
February 1, 2019: Applied Biochemistry and Biotechnology
Tahia Saleem, Marwa Dahpy, Ghada Ezzat, Ghada Abdelrahman, Essam Abdel-Aziz, Rania Farghaly
Altered plasma levels of branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) may predict the development of insulin resistance and other type 2 diabetes mellitus (T2DM) associated comorbidities. To elucidate the role of plasma free amino acids (PFAAs) profile as a biomarker for early detection of diabetic kidney disease, quantitative measurement of PFAAs profile was determined for 90 T2DM subjects, 30 were free of nephropathy, 30 with microalbuminuria, 30 with macroalbuminuria, and in addition to 30 healthy controls...
February 1, 2019: Applied Biochemistry and Biotechnology
Yanbin Feng, Yunxiu Zhang, Wei Ding, Peichun Wu, Xupeng Cao, Song Xue
Triacylglycerols are considered one of the most promising feedstocks for biofuels. Phospholipid:diacylglycerol acyltransferase (PDAT), responsible for the last step of triacylglycerol synthesis in the acyl-CoA-independent pathway, has attracted much attention by catalyzing membrane lipid transformation. However, due to lack of biochemical and enzymatic studies, PDAT has not carried forward in biocatalyst application. Here, the PDAT from Saccharomyces cerevisiae was expressed in Pichia pastoris. The purified enzymes were studied using different acyl donors and acceptors by thin layer chromatography and gas chromatography...
January 31, 2019: Applied Biochemistry and Biotechnology
Maria J Mota, Rita P Lopes, Mário M Q Simões, Ivonne Delgadillo, Jorge A Saraiva
The performance of fermentation under non-conventional conditions, such as high pressure (HP), is a strategy currently tested for different fermentation processes. In the present work, the purpose was to apply HP (10-50 MPa) to fermentation by Paracoccus denitrificans, a microorganism able to produce polyhydroxyalkanoates (PHA) from glycerol. In general, cell growth and glycerol consumption were both reduced by HP application, more extensively at higher pressure levels, such as 35 or 50 MPa. PHA production and composition was highly dependent on the pressure applied...
January 31, 2019: Applied Biochemistry and Biotechnology
Camila Soares Figueiredo, Ana Rita Nunes Lemes, Isis Sebastião, Janete Apparecida Desidério
The polyphagous caterpillar, Spodoptera frugiperda, has been controlled with either chemical insecticides or transgenic plants such as Bt maize that expresses the cry and/or vip genes of the Bacillus thuringiensis (Bt) bacterium. Despite the efficiency of Bt toxins in lepidopteran control, populations resistant to Bt plants have emerged in different locations around the world. Thus, understanding how combined proteins interact against pests can assist resistance control and management. This work demonstrated the toxicity of Cry1Ab, Cry1Ac, Cry1Ca, Cry1Ea, Cry2Aa, Cry2Ab, Vip3Aa, and Vip3Ca in single and combined assays against S...
January 31, 2019: Applied Biochemistry and Biotechnology
Chan Li, Wen Zhang, Ning Yang, Qing Song Zhang
As one of the typical phyllosilicate clays, hectorite (Hec) has some excellent characteristics and has been greatly applied in adsorption field for the removal of dye, endotoxin, etc. In this study, organic Hec nanocomposites modified with L-Lysine (Lys/Hec NCs) were prepared via solution intercalation method for BR removal. The effects of ionic strength, pH values, initial concentration of BR, and BSA concentration on the adsorption capacity for BR of Lys/Hec NCs were investigated. Results indicated that the adsorption capacity for BR of nanocomposites could reach 40 mg/g when the initial bilirubin concentration was 200 mg/L...
January 26, 2019: Applied Biochemistry and Biotechnology
Xiaojia Guo, Hongwei Shen, Yuxue Liu, Qian Wang, Xueying Wang, Chang Peng, Wujun Liu, Zongbao K Zhao
Lupulones, naturally produced by glandular trichomes of hop (Humulus lupulus), are prenylated phloroglucinol derivatives that contribute the bitter flavor of beer and demonstrate antimicrobial and anticancer activities. It is appealing to develop microbial cell factories such that lupulones may be produced via fermentation technology in lieu of extraction from limited plant resources. In this study, the yeast Saccharomyces cerevisiae transformants harboring a synthetic lupulone pathway that consisted of five genes from hop were constructed...
January 26, 2019: Applied Biochemistry and Biotechnology
Suruchi Poddar, Piyush Sunil Agarwal, Ajay Kumar Sahi, Kiran Yellappa Vajanthri, Pallawi, K N Singh, Sanjeev Kumar Mahto
Psyllium husk or isabgol contains xylan backbone linked with arabinose, rhamnose, and galacturonic acid units (arabinoxylans). In this study, we demonstrate the fabrication and characterization of a macroporous three-dimensional (3D) composite scaffold by mixing psyllium husk powder (PH) and gelatin (G) in different ratios, viz.100 PH, 75/25 PH/G, and 50/50 PH/G (w/w), using an EDC-NHS coupling reaction followed by freeze-drying method. The reaction was performed in aqueous as well as in alcoholic media to determine the most appropriate solvent system for this purpose...
January 25, 2019: Applied Biochemistry and Biotechnology
Huan Liu, Liping Zeng, Yuhan Jin, Kaili Nie, Li Deng, Fang Wang
Cellulase is an important enzyme that can be used to breakdown lignocellulose into glucose. Microbulbifer hydrolyticus IRE-31(ATCC 700072) is a kind of marine bacterium, which could grow in high salinity medium and has fast-strong growth ability. In this study, a novel strain was screened from Microbulbifer hydrolyticus IRE-31 through mutations to produce cellulase. The effect of different carbon sources on the growth as well as on the production of cellulase of the new strain was studied. Carboxymethyl-cellulase (CMCase) activity selected to represent cellulase was proven to be effectively promoted while xylose, galactose, and melibiose as well as glucose were used as carbon sources...
January 25, 2019: Applied Biochemistry and Biotechnology
Giovanna Lovato, Lia P P Batista, Marina B Preite, Jessica N Yamashiro, Ana L S Becker, Maria F G Vidal, Nathalia Pezini, Roberta Albanez, Suzana M Ratusznei, José A D Rodrigues
Vinasse, from sugar and ethanol production, stands out as one of the most problematic agroindustry wastes due to its high chemical oxygen demand, large production volume, and recalcitrant compounds. Therefore, the viability of using glycerin as a co-substrate in vinasse anaerobic digestion was tested, to increase process efficiency and biogas productivity. The effect of feeding strategy, influent concentration, cycle length, and temperature were assessed to optimize methane production. Glycerin (1.53% v/v) proved to be a good co-substrate since it increased the overall methane production in co-digestion assays...
January 24, 2019: Applied Biochemistry and Biotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"