journal
https://read.qxmd.com/read/38170280/acute-antiarrhythmic-effects-of-sglt2-inhibitors-dapagliflozin-lowers-the-excitability-of-atrial-cardiomyocytes
#21
JOURNAL ARTICLE
Amelie Paasche, Felix Wiedmann, Manuel Kraft, Fitzwilliam Seibertz, Valerie Herlt, Pablo L Blochberger, Natasa Jávorszky, Moritz Beck, Leo Weirauch, Timon Seeger, Antje Blank, Walter E Haefeli, Rawa Arif, Anna L Meyer, Gregor Warnecke, Matthias Karck, Niels Voigt, Norbert Frey, Constanze Schmidt
In recent years, SGLT2 inhibitors have become an integral part of heart failure therapy, and several mechanisms contributing to cardiorenal protection have been identified. In this study, we place special emphasis on the atria and investigate acute electrophysiological effects of dapagliflozin to assess the antiarrhythmic potential of SGLT2 inhibitors. Direct electrophysiological effects of dapagliflozin were investigated in patch clamp experiments on isolated atrial cardiomyocytes. Acute treatment with elevated-dose dapagliflozin caused a significant reduction of the action potential inducibility, the amplitude and maximum upstroke velocity...
February 2024: Basic Research in Cardiology
https://read.qxmd.com/read/38168863/pinacidil-ameliorates-cardiac-microvascular-ischemia-reperfusion-injury-by-inhibiting-chaperone-mediated-autophagy-of-calreticulin
#22
JOURNAL ARTICLE
Muyin Liu, Su Li, Ming Yin, Youran Li, Jinxiang Chen, Yuqiong Chen, You Zhou, Qiyu Li, Fei Xu, Chunfeng Dai, Yan Xia, Ao Chen, Danbo Lu, Zhangwei Chen, Juying Qian, Junbo Ge
Calcium overload is the key trigger in cardiac microvascular ischemia-reperfusion (I/R) injury, and calreticulin (CRT) is a calcium buffering protein located in the endoplasmic reticulum (ER). Additionally, the role of pinacidil, an antihypertensive drug, in protecting cardiac microcirculation against I/R injury has not been investigated. Hence, this study aimed to explore the benefits of pinacidil on cardiac microvascular I/R injury with a focus on endothelial calcium homeostasis and CRT signaling. Cardiac vascular perfusion and no-reflow area were assessed using FITC-lectin perfusion assay and Thioflavin-S staining...
February 2024: Basic Research in Cardiology
https://read.qxmd.com/read/38236300/lysophosphatidic-acid-contributes-to-myocardial-ischemia-reperfusion-injury-by-activating-trpv1-in-spinal-cord
#23
JOURNAL ARTICLE
Chao Wu, Meiyan Sun, Muge Qile, Yu Zhang, Liu Liu, Xueying Cheng, Xiaoxiao Dai, Eric R Gross, Ye Zhang, Shufang He
Lysophosphatidic acid (LPA) is a bioactive phospholipid that plays a crucial role in cardiovascular diseases. Here, we question whether LPA contributes to myocardial ischemia/reperfusion (I/R) injury by acting on transient receptor potential vanilloid 1 (TRPV1) in spinal cord. By ligating the left coronary artery to establish an in vivo I/R mouse model, we observed a 1.57-fold increase in LPA level in the cerebrospinal fluid (CSF). The I/R-elevated CSF LPA levels were reduced by HA130, an LPA synthesis inhibitor, compared to vehicle treatment (4...
January 18, 2024: Basic Research in Cardiology
https://read.qxmd.com/read/38172251/mast-cell-stabilizer-an-anti-allergic-drug-reduces-ventricular-arrhythmia-risk-via-modulation-of-neuroimmune-interaction
#24
JOURNAL ARTICLE
Yuhong Wang, Zhihao Liu, Wenjie Zhou, Jun Wang, Rui Li, Chen Peng, Liying Jiao, Song Zhang, Zhihao Liu, Zhongyang Yu, Ji Sun, Qiang Deng, Shoupeng Duan, Wuping Tan, Yijun Wang, Lingpeng Song, Fuding Guo, Zhen Zhou, Yueyi Wang, Liping Zhou, Hong Jiang, Lilei Yu
Mast cells (MCs) are important intermediates between the nervous and immune systems. The cardiac autonomic nervous system (CANS) crucially modulates cardiac electrophysiology and arrhythmogenesis, but whether and how MC-CANS neuroimmune interaction influences arrhythmia remain unclear. Our clinical data showed a close relationship between serum levels of MC markers and CANS activity, and then we use mast cell stabilizers (MCSs) to alter this MC-CANS communication. MCSs, which are well-known anti-allergic agents, could reduce the risk of ventricular arrhythmia (VA) after myocardial infarction (MI)...
January 3, 2024: Basic Research in Cardiology
https://read.qxmd.com/read/38170281/macrophage-based-therapeutic-approaches-for-cardiovascular-diseases
#25
REVIEW
Marida Sansonetti, Bashar Al Soodi, Thomas Thum, Mira Jung
Despite the advances in treatment options, cardiovascular disease (CVDs) remains the leading cause of death over the world. Chronic inflammatory response and irreversible fibrosis are the main underlying pathophysiological causes of progression of CVDs. In recent decades, cardiac macrophages have been recognized as main regulatory players in the development of these complex pathophysiological conditions. Numerous approaches aimed at macrophages have been devised, leading to novel prospects for therapeutic interventions...
January 3, 2024: Basic Research in Cardiology
https://read.qxmd.com/read/38151579/targeted-ablation-of-the-left-middle-cervical-ganglion-prevents-ventricular-arrhythmias-and-cardiac-injury-induced-by-ami
#26
JOURNAL ARTICLE
Meng Zheng, Siyu Chen, Ziyue Zeng, Huanhuan Cai, Hanyu Zhang, Xiaomei Yu, Weina Wang, Xianqing Li, Chen-Ze Li, Bo He, Ke-Qiong Deng, Zhibing Lu
Cardiac sympathetic overactivation is a critical driver in the progression of acute myocardial infarction (AMI). The left middle cervical ganglion (LMCG) is an important extracardiac sympathetic ganglion. However, the regulatory effects of LMCG on AMI have not yet been fully documented. In the present study, we detected that the LMCG was innervated by abundant sympathetic components and exerted an excitatory effect on the cardiac sympathetic nervous system in response to stimulation. In canine models of AMI, targeted ablation of LMCG reduced the sympathetic indexes of heart rate variability and serum norepinephrine, resulting in suppressed cardiac sympathetic activity...
December 28, 2023: Basic Research in Cardiology
https://read.qxmd.com/read/38148348/stimulating-cardiac-glucose-oxidation-lessens-the-severity-of-heart-failure-in-aged-female-mice
#27
JOURNAL ARTICLE
Qiuyu Sun, Cory S Wagg, Berna Güven, Kaleigh Wei, Amanda A de Oliveira, Heidi Silver, Liyan Zhang, Ander Vergara, Brandon Chen, Nathan Wong, Faqi Wang, Jason R B Dyck, Gavin Y Oudit, Gary D Lopaschuk
Heart failure is a prevalent disease worldwide. While it is well accepted that heart failure involves changes in myocardial energetics, what alterations that occur in fatty acid oxidation and glucose oxidation in the failing heart remains controversial. The goal of the study are to define the energy metabolic profile in heart failure induced by obesity and hypertension in aged female mice, and to attempt to lessen the severity of heart failure by stimulating myocardial glucose oxidation. 13-Month-old C57BL/6 female mice were subjected to 10 weeks of a 60% high-fat diet (HFD) with 0...
December 26, 2023: Basic Research in Cardiology
https://read.qxmd.com/read/38147128/thrombospondin-1-and-reelin-act-through-vldlr-to-regulate-cardiac-growth-and-repair
#28
JOURNAL ARTICLE
Lijuan Pei, Zhaohui Ouyang, Hongjie Zhang, Shiqi Huang, Rui Jiang, Bilin Liu, Yansong Tang, Mengying Feng, Min Yuan, Haocun Wang, Su Yao, Shuyue Shi, Zhao Yu, Dachun Xu, Guohua Gong, Ke Wei
Adult mammalian cardiomyocytes have minimal cell cycle capacity, which leads to poor regeneration after cardiac injury such as myocardial infarction. Many positive regulators of cardiomyocyte cell cycle and cardioprotective signals have been identified, but extracellular signals that suppress cardiomyocyte proliferation are poorly understood. We profiled receptors enriched in postnatal cardiomyocytes, and found that very-low-density-lipoprotein receptor (Vldlr) inhibits neonatal cardiomyocyte cell cycle. Paradoxically, Reelin, the well-known Vldlr ligand, expressed in cardiac Schwann cells and lymphatic endothelial cells, promotes neonatal cardiomyocyte proliferation...
December 26, 2023: Basic Research in Cardiology
https://read.qxmd.com/read/38145999/striated-preferentially-expressed-gene-deficiency-leads-to-mitochondrial-dysfunction-in-developing-cardiomyocytes
#29
JOURNAL ARTICLE
Gu Li, He Huang, Yanshuang Wu, Chang Shu, Narae Hwang, Qifei Li, Rose Zhao, Hilaire C Lam, William M Oldham, Souheil Ei-Chemaly, Pankaj B Agrawal, Jie Tian, Xiaoli Liu, Mark A Perrella
A deficiency of striated preferentially expressed gene (Speg), a member of the myosin light chain kinase family, results in abnormal myofibril structure and function of immature cardiomyocytes (CMs), corresponding with a dilated cardiomyopathy, heart failure and perinatal death. Mitochondrial development plays a role in cardiomyocyte maturation. Therefore, this study investigated whether Speg deficiency ( - / - ) in CMs would result in mitochondrial abnormalities. Speg wild-type and Speg-/- C57BL/6 littermate mice were utilized for assessment of mitochondrial structure by transmission electron and confocal microscopies...
December 26, 2023: Basic Research in Cardiology
https://read.qxmd.com/read/37955687/targeting-mitochondrial-shape-at-the-heart-of-cardioprotection
#30
JOURNAL ARTICLE
Sauri Hernandez-Resendiz, Aishwarya Prakash, Sze Jie Loo, Martina Semenzato, Kroekkiat Chinda, Gustavo E Crespo-Avilan, Linh Chi Dam, Shengjie Lu, Luca Scorrano, Derek J Hausenloy
There remains an unmet need to identify novel therapeutic strategies capable of protecting the myocardium against the detrimental effects of acute ischemia-reperfusion injury (IRI), to reduce myocardial infarct (MI) size and prevent the onset of heart failure (HF) following acute myocardial infarction (AMI). In this regard, perturbations in mitochondrial morphology with an imbalance in mitochondrial fusion and fission can disrupt mitochondrial metabolism, calcium homeostasis, and reactive oxygen species production, factors which are all known to be critical determinants of cardiomyocyte death following acute myocardial IRI...
November 13, 2023: Basic Research in Cardiology
https://read.qxmd.com/read/37938421/the-role-of-glycolytic-metabolic-pathways-in-cardiovascular-disease-and-potential-therapeutic-approaches
#31
REVIEW
Shuxian Chen, Yuanming Zou, Chunyu Song, Kexin Cao, Kexin Cai, Yanjiao Wu, Zhaobo Zhang, Danxi Geng, Wei Sun, Nanxiang Ouyang, Naijin Zhang, Zhao Li, Guozhe Sun, Yixiao Zhang, Yingxian Sun, Ying Zhang
Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure...
November 8, 2023: Basic Research in Cardiology
https://read.qxmd.com/read/37930434/activation-of-the-integrated-stress-response-rewires-cardiac-metabolism-in-barth-syndrome
#32
JOURNAL ARTICLE
Ilona Kutschka, Edoardo Bertero, Christina Wasmus, Ke Xiao, Lifeng Yang, Xinyu Chen, Yasuhiro Oshima, Marcus Fischer, Manuela Erk, Berkan Arslan, Lin Alhasan, Daria Grosser, Katharina J Ermer, Alexander Nickel, Michael Kohlhaas, Hanna Eberl, Sabine Rebs, Katrin Streckfuss-Bömeke, Werner Schmitz, Peter Rehling, Thomas Thum, Takahiro Higuchi, Joshua Rabinowitz, Christoph Maack, Jan Dudek
Barth Syndrome (BTHS) is an inherited cardiomyopathy caused by defects in the mitochondrial transacylase TAFAZZIN (Taz), required for the synthesis of the phospholipid cardiolipin. BTHS is characterized by heart failure, increased propensity for arrhythmias and a blunted inotropic reserve. Defects in Ca2+ -induced Krebs cycle activation contribute to these functional defects, but despite oxidation of pyridine nucleotides, no oxidative stress developed in the heart. Here, we investigated how retrograde signaling pathways orchestrate metabolic rewiring to compensate for mitochondrial defects...
November 6, 2023: Basic Research in Cardiology
https://read.qxmd.com/read/37923788/musashi-2-causes-cardiac-hypertrophy-and-heart-failure-by-inducing-mitochondrial-dysfunction-through-destabilizing-cluh-and-smyd1-mrna
#33
JOURNAL ARTICLE
Sandhya Singh, Aakash Gaur, Rakesh Kumar Sharma, Renu Kumari, Shakti Prakash, Sunaina Kumari, Ayushi Devendrasingh Chaudhary, Pankaj Prasun, Priyanka Pant, Hannah Hunkler, Thomas Thum, Kumaravelu Jagavelu, Pragya Bharati, Kashif Hanif, Pragya Chitkara, Shailesh Kumar, Kalyan Mitra, Shashi Kumar Gupta
Regulation of RNA stability and translation by RNA-binding proteins (RBPs) is a crucial process altering gene expression. Musashi family of RBPs comprising Msi1 and Msi2 is known to control RNA stability and translation. However, despite the presence of MSI2 in the heart, its function remains largely unknown. Here, we aim to explore the cardiac functions of MSI2. We confirmed the presence of MSI2 in the adult mouse, rat heart, and neonatal rat cardiomyocytes. Furthermore, Msi2 was significantly enriched in the heart cardiomyocyte fraction...
November 3, 2023: Basic Research in Cardiology
https://read.qxmd.com/read/37819607/succinate-dehydrogenase-is-essential-for-epigenetic-and-metabolic-homeostasis-in-hearts
#34
JOURNAL ARTICLE
Wenwen Li, Li Quan, Kun Peng, Yanru Wang, Xianhua Wang, Quan Chen, Heping Cheng, Qi Ma
A hallmark of heart failure is a metabolic switch away from fatty acids β-oxidation (FAO) to glycolysis. Here, we show that succinate dehydrogenase (SDH) is required for maintenance of myocardial homeostasis of FAO/glycolysis. Mice with cardiomyocyte-restricted deletion of subunit b or c of SDH developed a dilated cardiomyopathy and heart failure. Hypertrophied hearts displayed a decrease in FAO, while glucose uptake and glycolysis were augmented, which was reversed by enforcing FAO fuels via a high-fat diet, which also improved heart failure of mutant mice...
October 11, 2023: Basic Research in Cardiology
https://read.qxmd.com/read/37814087/splenic-monocytes-mediate-inflammatory-response-and-exacerbate-myocardial-ischemia-reperfusion-injury-in-a-mitochondrial-cell-free-dna-tlr9-nlrp3-dependent-fashion
#35
JOURNAL ARTICLE
Dina Xie, Hanliang Guo, Mingbiao Li, Liqun Jia, Hao Zhang, Degang Liang, Naishi Wu, Zequan Yang, Yikui Tian
The spleen contributes importantly to myocardial ischemia/reperfusion (MI/R) injury. Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) recruits inflammasomes, initiating inflammatory responses and mediating tissue injury. We hypothesize that myocardial cell-free DNA (cfDNA) activates the splenic NLRP3 inflammasome during early reperfusion, increases systemic inflammatory response, and exacerbates myocardial infarct. Mice were subjected to 40 min of ischemia followed by 0, 1, 5, or 15 min, or 24 h of reperfusion...
October 9, 2023: Basic Research in Cardiology
https://read.qxmd.com/read/37801130/outcomes-of-hypothalamic-oxytocin-neuron-driven-cardioprotection-after-acute-myocardial-infarction
#36
JOURNAL ARTICLE
Kathryn J Schunke, Jeannette Rodriguez, Jhansi Dyavanapalli, John Schloen, Xin Wang, Joan Escobar, Grant Kowalik, Emily C Cheung, Caitlin Ribeiro, Rebekah Russo, Bridget R Alber, Olga Dergacheva, Sheena W Chen, Alejandro E Murillo-Berlioz, Kyongjune B Lee, Gregory Trachiotis, Emilia Entcheva, Christine A Brantner, David Mendelowitz, Matthew W Kay
Altered autonomic balance is a hallmark of numerous cardiovascular diseases, including myocardial infarction (MI). Although device-based vagal stimulation is cardioprotective during chronic disease, a non-invasive approach to selectively stimulate the cardiac parasympathetic system immediately after an infarction does not exist and is desperately needed. Cardiac vagal neurons (CVNs) in the brainstem receive powerful excitation from a population of neurons in the paraventricular nucleus (PVN) of the hypothalamus that co-release oxytocin (OXT) and glutamate to excite CVNs...
October 6, 2023: Basic Research in Cardiology
https://read.qxmd.com/read/37798455/mitophagy-for-cardioprotection
#37
REVIEW
Allen Sam Titus, Eun-Ah Sung, Daniela Zablocki, Junichi Sadoshima
Mitochondrial function is maintained by several strictly coordinated mechanisms, collectively termed mitochondrial quality control mechanisms, including fusion and fission, degradation, and biogenesis. As the primary source of energy in cardiomyocytes, mitochondria are the central organelle for maintaining cardiac function. Since adult cardiomyocytes in humans rarely divide, the number of dysfunctional mitochondria cannot easily be diluted through cell division. Thus, efficient degradation of dysfunctional mitochondria is crucial to maintaining cellular function...
October 5, 2023: Basic Research in Cardiology
https://read.qxmd.com/read/37792081/recent-advances-on-the-role-of-monoamine-oxidases-in-cardiac-pathophysiology
#38
JOURNAL ARTICLE
Nina Kaludercic, Ruth Jepchirchir Arusei, Fabio Di Lisa
Numerous physiological and pathological roles have been attributed to the formation of mitochondrial reactive oxygen species (ROS). However, the individual contribution of different mitochondrial processes independently of bioenergetics remains elusive and clinical treatments unavailable. A notable exception to this complexity is found in the case of monoamine oxidases (MAOs). Unlike other ROS-producing enzymes, especially within mitochondria, MAOs possess a distinct combination of defined molecular structure, substrate specificity, and clinically accessible inhibitors...
October 4, 2023: Basic Research in Cardiology
https://read.qxmd.com/read/37782407/novel-gsdmd-inhibitor-gi-y1-protects-heart-against-pyroptosis-and-ischemia-reperfusion-injury-by-blocking-pyroptotic-pore-formation
#39
JOURNAL ARTICLE
Lingfeng Zhong, Jibo Han, Xiaoxi Fan, Zhouqing Huang, Lan Su, Xueli Cai, Shuang Lin, Xudong Chen, Weijian Huang, Shanshan Dai, Bozhi Ye
Activation of gasdermin D (GSDMD) and its concomitant cardiomyocyte pyroptosis are critically involved in multiple cardiac pathological conditions. Pharmacological inhibition or gene knockout of GSDMD could protect cardiomyocyte from pyroptosis and dysfunction. Thus, seeking and developing highly potent GSDMD inhibitors probably provide an attractive strategy for treating diseases targeting GSDMD. Through structure-based virtual screening, pharmacological screening and subsequent pharmacological validations, we preliminarily identified GSDMD inhibitor Y1 (GI-Y1) as a selective GSDMD inhibitor with cardioprotective effects...
October 2, 2023: Basic Research in Cardiology
https://read.qxmd.com/read/37775647/giant-mitochondria-in-cardiomyocytes-cellular-architecture-in-health-and-disease
#40
REVIEW
Amy Li, Gerald J Shami, Lisa Griffiths, Sean Lal, Helen Irving, Filip Braet
Giant mitochondria are frequently observed in different disease models within the brain, kidney, and liver. In cardiac muscle, these enlarged organelles are present across diverse physiological and pathophysiological conditions including in ageing and exercise, and clinically in alcohol-induced heart disease and various cardiomyopathies. This mitochondrial aberration is widely considered an early structural hallmark of disease leading to adverse organ function. In this thematic paper, we discuss the current state-of-knowledge on the presence, structure and functional implications of giant mitochondria in heart muscle...
September 29, 2023: Basic Research in Cardiology
journal
journal
23071
2
3
Fetch more papers »
Fetching more papers... Fetching...
Remove bar
Read by QxMD icon Read
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"

We want to hear from doctors like you!

Take a second to answer a survey question.