EVALUATION STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
SYSTEMATIC REVIEW
Add like
Add dislike
Add to saved papers

Dalfampridine: a brief review of its mechanism of action and efficacy as a treatment to improve walking in patients with multiple sclerosis.

BACKGROUND: Multiple sclerosis (MS) can cause progressive walking impairment that contributes to disability, loss of independence, and reduced quality of life. Dalfampridine (4-aminopyridine), a voltage-dependent potassium channel blocker, has been shown to improve walking in patients with MS, as demonstrated by an increase in walking speed.

OBJECTIVE: To summarize knowledge about the mechanism of action of dalfampridine in the context of clinical evidence of walking improvement in MS patients.

METHODS: Although this was not a systematic review, which is the primary limitation of this study, searches of PubMed were performed using relevant search terms to identify studies that examined the mechanism of action related to MS and its effects in patients with MS in clinical trials.

RESULTS: Voltage-gated potassium channels represent a family of related proteins that span cell membranes, open and close in response to changes in the transmembrane potential, and help regulate ionic potassium currents. Action potential conduction deficits in demyelinated axons result in part from the exposure after demyelination of the paranodal and internodal potassium channels that are distributed in the axonal membrane. This exposure leads to abnormal currents across the axonal membrane that can slow action potential conduction, result in conduction failure, or affect the axon's capacity for repetitive discharge. While dalfampridine is a broad-spectrum blocker of voltage-dependent potassium channels at millimolar concentrations, studies have shown improvement in action potential conduction in demyelinated axons at concentrations as low as 1 μM, and therapeutic plasma concentrations (associated with improved walking) are in the range of 0.25 µM. However, no specific potassium channel subtype has yet been characterized with significant sensitivity to dalfampridine in this range, and the effects of the drug at this low concentration appear to be quite selective. Improved conduction translates into clinical benefit as measured by objectively and subjectively assessed walking relative to placebo. Such improvements were observed in approximately one third of patients treated with an extended-release formulation of dalfampridine in clinical trials. These patients who responded to dalfampridine had an average increase in walking speed of approximately 25%, and greater improvements than nonresponders on a self-reported subjective measure of walking.

CONCLUSIONS: The extended-release formulation of dalfampridine has been shown in clinical trials to improve walking speed in approximately one third of MS patients with ambulatory impairment. The putative mechanism of action of dalfampridine is restoration of action potential conduction via blockade of an as yet uncharacterized subset of potassium channels in demyelinated axons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app