JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Re-induction of hyponatremia after rapid overcorrection of hyponatremia reduces mortality in rats.

Kidney International 2009 September
Osmotic demyelination syndrome is a devastating neurologic disorder often seen after the rapid correction of chronic hyponatremia. The permeability of the blood-brain barrier is increased in experimental osmotic demyelination, and some have suggested that corticosteroids protect against this disorder by keeping the permeability of the blood-brain barrier low. We previously reported that re-lowering of the serum sodium after rapid correction of chronic hyponatremia was beneficial if performed early in the course (12 to 24 h). Here we compared mortality, blood-brain barrier permeability, and microglial activation in rats after the rapid correction of chronic hyponatremia. We studied three groups of rats after correction of chronic hyponatremia: and treated them with sodium chloride, with or without dexamethasone; or with sodium chloride followed by re-induction of hyponatremia. We found that treatment with dexamethasone or re-induction of hyponatremia effectively prevented the opening of the blood-brain barrier, reduced neurological manifestations, and decreased microglial activation; however, only re-induction of hyponatremia resulted in a significant decrease in mortality 5 days after the correction of chronic hyponatremia. Restoring the permeability of the blood-brain barrier to normal levels did not decrease mortality. Our results suggest that after inadvertent rapid correction of hyponatremia, treatment options should favor re-lowering serum sodium. The increased permeability of blood-brain barrier seen in osmotic demyelination syndrome may not be a primary pathophysiologic insult of this syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app