Add like
Add dislike
Add to saved papers

Vitamin D: direct effects of vitamin D metabolites on bone: lessons from genetically modified mice.

The vitamin D endocrine system has clear beneficial effects on bone as demonstrated by prevention of rickets in children and by reducing the risk of osteomalacia or osteoporosis in adults or elderly subjects. Depending on the design of the study of genetically modified animals, however, 1,25(OH)2D and the vitamin D receptor (VDR) may have no effect, beneficial or even deleterious direct effects on bone. We present here a comprehensive model of the direct effects of vitamin D on bone. In case of sufficient calcium supply, vitamin D and its metabolites can improve the calcium balance and facilitate mineral deposition in bone matrix largely without direct effects on bone cells, although some beneficial effects may occur via mature osteoblasts, as demonstrated in mice with osteoblast-specific overexpression of VDR or 1α-hydroxylase. In case of calcium deficiency, however, 1,25(OH)2D enhances bone resorption, whereas simultaneously inhibiting bone mineralization, so as to defend serum calcium homeostasis at the expense of bone mass. This dual role probably provides a survival benefit for land vertebrates living in a calcium-poor environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app